multiheadAttention.py 6.33 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle.nn import Linear
from paddle.nn.initializer import XavierUniform as xavier_uniform_
from paddle.nn.initializer import Constant as constant_
from paddle.nn.initializer import XavierNormal as xavier_normal_

zeros_ = constant_(value=0.)
ones_ = constant_(value=1.)


class MultiheadAttention(nn.Layer):
    """Allows the model to jointly attend to information
    from different representation subspaces.
    See reference: Attention Is All You Need

    .. math::
        \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
        \text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)

    Args:
        embed_dim: total dimension of the model
        num_heads: parallel attention layers, or heads

    """

    def __init__(self,
                 embed_dim,
                 num_heads,
                 dropout=0.,
                 bias=True,
                 add_bias_kv=False,
                 add_zero_attn=False):
        super(MultiheadAttention, self).__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.dropout = dropout
        self.head_dim = embed_dim // num_heads
        assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
        self.scaling = self.head_dim**-0.5
        self.out_proj = Linear(embed_dim, embed_dim, bias_attr=bias)
        self._reset_parameters()
        self.conv1 = paddle.nn.Conv2D(
            in_channels=embed_dim, out_channels=embed_dim, kernel_size=(1, 1))
        self.conv2 = paddle.nn.Conv2D(
            in_channels=embed_dim, out_channels=embed_dim, kernel_size=(1, 1))
        self.conv3 = paddle.nn.Conv2D(
            in_channels=embed_dim, out_channels=embed_dim, kernel_size=(1, 1))

    def _reset_parameters(self):
        xavier_uniform_(self.out_proj.weight)

    def forward(self,
                query,
                key,
                value,
                key_padding_mask=None,
                incremental_state=None,
                attn_mask=None):
        """
        Inputs of forward function
            query: [target length, batch size, embed dim]
            key: [sequence length, batch size, embed dim]
            value: [sequence length, batch size, embed dim]
            key_padding_mask: if True, mask padding based on batch size
            incremental_state: if provided, previous time steps are cashed
            need_weights: output attn_output_weights
            static_kv: key and value are static

        Outputs of forward function
            attn_output: [target length, batch size, embed dim]
            attn_output_weights: [batch size, target length, sequence length]
        """
        q_shape = paddle.shape(query)
        src_shape = paddle.shape(key)
        q = self._in_proj_q(query)
        k = self._in_proj_k(key)
        v = self._in_proj_v(value)
        q *= self.scaling
        q = paddle.transpose(
            paddle.reshape(
                q, [q_shape[0], q_shape[1], self.num_heads, self.head_dim]),
            [1, 2, 0, 3])
        k = paddle.transpose(
            paddle.reshape(
                k, [src_shape[0], q_shape[1], self.num_heads, self.head_dim]),
            [1, 2, 0, 3])
        v = paddle.transpose(
            paddle.reshape(
                v, [src_shape[0], q_shape[1], self.num_heads, self.head_dim]),
            [1, 2, 0, 3])
        if key_padding_mask is not None:
            assert key_padding_mask.shape[0] == q_shape[1]
            assert key_padding_mask.shape[1] == src_shape[0]
        attn_output_weights = paddle.matmul(q,
                                            paddle.transpose(k, [0, 1, 3, 2]))
        if attn_mask is not None:
            attn_mask = paddle.unsqueeze(paddle.unsqueeze(attn_mask, 0), 0)
            attn_output_weights += attn_mask
        if key_padding_mask is not None:
            attn_output_weights = paddle.reshape(
                attn_output_weights,
                [q_shape[1], self.num_heads, q_shape[0], src_shape[0]])
            key = paddle.unsqueeze(paddle.unsqueeze(key_padding_mask, 1), 2)
            key = paddle.cast(key, 'float32')
            y = paddle.full(
                shape=paddle.shape(key), dtype='float32', fill_value='-inf')
            y = paddle.where(key == 0., key, y)
            attn_output_weights += y
        attn_output_weights = F.softmax(
            attn_output_weights.astype('float32'),
            axis=-1,
            dtype=paddle.float32 if attn_output_weights.dtype == paddle.float16
            else attn_output_weights.dtype)
        attn_output_weights = F.dropout(
            attn_output_weights, p=self.dropout, training=self.training)

        attn_output = paddle.matmul(attn_output_weights, v)
        attn_output = paddle.reshape(
            paddle.transpose(attn_output, [2, 0, 1, 3]),
            [q_shape[0], q_shape[1], self.embed_dim])
        attn_output = self.out_proj(attn_output)

        return attn_output

    def _in_proj_q(self, query):
        query = paddle.transpose(query, [1, 2, 0])
        query = paddle.unsqueeze(query, axis=2)
        res = self.conv1(query)
        res = paddle.squeeze(res, axis=2)
        res = paddle.transpose(res, [2, 0, 1])
        return res

    def _in_proj_k(self, key):
        key = paddle.transpose(key, [1, 2, 0])
        key = paddle.unsqueeze(key, axis=2)
        res = self.conv2(key)
        res = paddle.squeeze(res, axis=2)
        res = paddle.transpose(res, [2, 0, 1])
        return res

    def _in_proj_v(self, value):
        value = paddle.transpose(value, [1, 2, 0])  #(1, 2, 0)
        value = paddle.unsqueeze(value, axis=2)
        res = self.conv3(value)
        res = paddle.squeeze(res, axis=2)
        res = paddle.transpose(res, [2, 0, 1])
        return res