"training/src/eval.py" did not exist on "9bc63d1e2dd3eee8cf0307036e077a752bd79fde"
multi_languages_en.md 8.09 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Multi-language model

**Recent Update**

- 2022.5.8 update the `PP-OCRv3` version of the multi-language detection and recognition model, and the average recognition accuracy has increased by more than 5%.
- 2021.4.9 supports the detection and recognition of 80 languages
- 2021.4.9 supports **lightweight high-precision** English model detection and recognition

PaddleOCR aims to create a rich, leading, and practical OCR tool library, which not only provides
Chinese and English models in general scenarios, but also provides models specifically trained
in English scenarios. And multilingual models covering [80 languages](#language_abbreviations).

Among them, the English model supports the detection and recognition of uppercase and lowercase
letters and common punctuation, and the recognition of space characters is optimized:

<div align="center">
    <img src="../imgs_results/multi_lang/img_12.jpg" width="900" height="300">
</div>

The multilingual models cover Latin, Arabic, Traditional Chinese, Korean, Japanese, etc.:

<div align="center">
    <img src="../imgs_results/multi_lang/japan_2.jpg" width="600" height="300">
    <img src="../imgs_results/multi_lang/french_0.jpg" width="300" height="300">
    <img src="../imgs_results/multi_lang/korean_0.jpg" width="500" height="300">
    <img src="../imgs_results/multi_lang/arabic_0.jpg" width="300" height="300">
</div>

This document will briefly introduce how to use the multilingual model.

- [1 Installation](#Install)
    - [1.1 Paddle installation](#paddleinstallation)
    - [1.2 PaddleOCR package installation](#paddleocr_package_install)

- [2 Quick Use](#Quick_Use)
    - [2.1 Command line operation](#Command_line_operation)
    - [2.2 Run with Python script](#python_Script_running)
- [3 Custom Training](#Custom_Training)
- [4 Inference and Deployment](#inference)
- [4 Supported languages and abbreviations](#language_abbreviations)

<a name="Install"></a>
## 1 Installation

<a name="paddle_install"></a>
### 1.1 Paddle installation
```
# cpu
pip install paddlepaddle

# gpu
pip install paddlepaddle-gpu
```

<a name="paddleocr_package_install"></a>
### 1.2 PaddleOCR package installation


pip install
```
pip install "paddleocr>=2.0.6" # 2.0.6 version is recommended
```
Build and install locally
```
python3 setup.py bdist_wheel
pip3 install dist/paddleocr-x.x.x-py3-none-any.whl # x.x.x is the version number of paddleocr
```

<a name="Quick_use"></a>
## 2 Quick use

<a name="Command_line_operation"></a>
### 2.1 Command line operation

View help information

```
paddleocr -h
```

* Whole image prediction (detection + recognition)

PaddleOCR currently supports 80 languages, which can be specified by the --lang parameter.
The supported languages are listed in the [table](#language_abbreviations).

``` bash
paddleocr --image_dir doc/imgs_en/254.jpg --lang=en
```
<div align="center">
    <img src="../imgs_en/254.jpg" width="300" height="600">
    <img src="../imgs_results/multi_lang/img_02.jpg" width="600" height="600">
</div>

The result is a list. Each item contains a text box, text and recognition confidence
```text
[('PHO CAPITAL', 0.95723116), [[66.0, 50.0], [327.0, 44.0], [327.0, 76.0], [67.0, 82.0]]]
[('107 State Street', 0.96311164), [[72.0, 90.0], [451.0, 84.0], [452.0, 116.0], [73.0, 121.0]]]
[('Montpelier Vermont', 0.97389287), [[69.0, 132.0], [501.0, 126.0], [501.0, 158.0], [70.0, 164.0]]]
[('8022256183', 0.99810505), [[71.0, 175.0], [363.0, 170.0], [364.0, 202.0], [72.0, 207.0]]]
[('REG 07-24-201706:59 PM', 0.93537045), [[73.0, 299.0], [653.0, 281.0], [654.0, 318.0], [74.0, 336.0]]]
[('045555', 0.99346405), [[509.0, 331.0], [651.0, 325.0], [652.0, 356.0], [511.0, 362.0]]]
[('CT1', 0.9988654), [[535.0, 367.0], [654.0, 367.0], [654.0, 406.0], [535.0, 406.0]]]
......
```

* Recognition

```bash
paddleocr --image_dir doc/imgs_words_en/word_308.png --det false --lang=en
```

![](https://raw.githubusercontent.com/PaddlePaddle/PaddleOCR/release/2.1/doc/imgs_words_en/word_308.png)

The result is a 2-tuple, which contains the recognition result and recognition confidence

```text
(0.99879867, 'LITTLE')
```

* Detection

```
paddleocr --image_dir PaddleOCR/doc/imgs/11.jpg --rec false
```

The result is a list. Each item represents the coordinates of a text box.

```
[[26.0, 457.0], [137.0, 457.0], [137.0, 477.0], [26.0, 477.0]]
[[25.0, 425.0], [372.0, 425.0], [372.0, 448.0], [25.0, 448.0]]
[[128.0, 397.0], [273.0, 397.0], [273.0, 414.0], [128.0, 414.0]]
......
```

<a name="python_script_running"></a>
### 2.2 Run with Python script

PPOCR is able to run with Python scripts for easy integration with your own code:

* Whole image prediction (detection + recognition)

```
from paddleocr import PaddleOCR, draw_ocr

# Also switch the language by modifying the lang parameter
ocr = PaddleOCR(lang="korean") # The model file will be downloaded automatically when executed for the first time
img_path ='doc/imgs/korean_1.jpg'
result = ocr.ocr(img_path)
# Recognition and detection can be performed separately through parameter control
# result = ocr.ocr(img_path, det=False)  Only perform recognition
# result = ocr.ocr(img_path, rec=False)  Only perform detection
# Print detection frame and recognition result
for line in result:
    print(line)

# Visualization
from PIL import Image
image = Image.open(img_path).convert('RGB')
boxes = [line[0] for line in result]
txts = [line[1][0] for line in result]
scores = [line[1][1] for line in result]
im_show = draw_ocr(image, boxes, txts, scores, font_path='/path/to/PaddleOCR/doc/fonts/korean.ttf')
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

Visualization of results:
![](https://raw.githubusercontent.com/PaddlePaddle/PaddleOCR/release/2.1/doc/imgs_results/korean.jpg)


PPOCR also supports direction classification. For more detailed usage, please refer to: [whl package instructions](whl_en.md).

<a name="Custom_training"></a>
## 3 Custom training

PPOCR supports using your own data for custom training or fine-tune, where the recognition model can refer to [French configuration file](../../configs/rec/multi_language/rec_french_lite_train.yml)
Modify the training data path, dictionary and other parameters.

For specific data preparation and training process, please refer to: [Text Detection](../doc_en/detection_en.md), [Text Recognition](../doc_en/recognition_en.md), more functions such as predictive deployment,
For functions such as data annotation, you can read the complete [Document Tutorial](../../README.md).


<a name="inference"></a>
## 4 Inference and Deployment

In addition to installing the whl package for quick forecasting,
PPOCR also provides a variety of forecasting deployment methods.
If necessary, you can read related documents:

- [Python Inference](./inference_ppocr_en.md)
- [C++ Inference](../../deploy/cpp_infer/readme.md)
- [Serving](../../deploy/hubserving/readme_en.md)
- [Mobile](../../deploy/lite/readme.md)
- [Benchmark](./benchmark_en.md)


<a name="language_abbreviations"></a>
## 5 Support languages and abbreviations

| Language  | Abbreviation | | Language  | Abbreviation |
| ---  | --- | --- | ---  | --- |
|Chinese & English|ch| |Arabic|ar|
|English|en| |Hindi|hi|
|French|fr| |Uyghur|ug|
|German|german| |Persian|fa|
|Japan|japan| |Urdu|ur|
|Korean|korean| | Serbian(latin) |rs_latin|
|Chinese Traditional |chinese_cht| |Occitan |oc|
| Italian |it| |Marathi|mr|
|Spanish |es| |Nepali|ne|
| Portuguese|pt| |Serbian(cyrillic)|rs_cyrillic|
|Russia|ru||Bulgarian |bg|
|Ukranian|uk| |Estonian |et|
|Belarusian|be| |Irish |ga|
|Telugu |te| |Croatian |hr|
|Saudi Arabia|sa| |Hungarian |hu|
|Tamil |ta| |Indonesian|id|
|Afrikaans |af| |Icelandic|is|
|Azerbaijani  |az||Kurdish|ku|
|Bosnian|bs| |Lithuanian |lt|
|Czech|cs| |Latvian |lv|
|Welsh |cy| |Maori|mi|
|Danish|da| |Malay|ms|
|Maltese |mt| |Adyghe |ady|
|Dutch |nl| |Kabardian |kbd|
|Norwegian |no| |Avar |ava|
|Polish |pl| |Dargwa |dar|
|Romanian |ro| |Ingush |inh|
|Slovak |sk| |Lak |lbe|
|Slovenian |sl| |Lezghian |lez|
|Albanian |sq| |Tabassaran |tab|
|Swedish |sv| |Bihari |bh|
|Swahili |sw| |Maithili |mai|
|Tagalog |tl| |Angika |ang|
|Turkish |tr| |Bhojpuri |bho|
|Uzbek |uz| |Magahi |mah|
|Vietnamese |vi| |Nagpur |sck|
|Mongolian |mn| |Newari |new|
|Abaza |abq| |Goan Konkani|gom|