sensitivity_anal.py 6.1 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys

__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '..', '..', '..'))
sys.path.append(os.path.join(__dir__, '..', '..', '..', 'tools'))

import paddle
import paddle.distributed as dist
from ppocr.data import build_dataloader
from ppocr.modeling.architectures import build_model
from ppocr.losses import build_loss
from ppocr.optimizer import build_optimizer
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
from ppocr.utils.save_load import load_model
import tools.program as program

dist.get_world_size()


def get_pruned_params(parameters):
    params = []

    for param in parameters:
        if len(
                param.shape
        ) == 4 and 'depthwise' not in param.name and 'transpose' not in param.name and "conv2d_57" not in param.name and "conv2d_56" not in param.name:
            params.append(param.name)
    return params


def main(config, device, logger, vdl_writer):
    # init dist environment
    if config['Global']['distributed']:
        dist.init_parallel_env()

    global_config = config['Global']

    # build dataloader
    train_dataloader = build_dataloader(config, 'Train', device, logger)
    if config['Eval']:
        valid_dataloader = build_dataloader(config, 'Eval', device, logger)
    else:
        valid_dataloader = None

    # build post process
    post_process_class = build_post_process(config['PostProcess'],
                                            global_config)

    # build model
    # for rec algorithm
    if hasattr(post_process_class, 'character'):
        char_num = len(getattr(post_process_class, 'character'))
        config['Architecture']["Head"]['out_channels'] = char_num
    model = build_model(config['Architecture'])
    if config['Architecture']['model_type'] == 'det':
        input_shape = [1, 3, 640, 640]
    elif config['Architecture']['model_type'] == 'rec':
        input_shape = [1, 3, 32, 320]
    flops = paddle.flops(model, input_shape)

    logger.info("FLOPs before pruning: {}".format(flops))

    from paddleslim.dygraph import FPGMFilterPruner
    model.train()

    pruner = FPGMFilterPruner(model, input_shape)

    # build loss
    loss_class = build_loss(config['Loss'])

    # build optim
    optimizer, lr_scheduler = build_optimizer(
        config['Optimizer'],
        epochs=config['Global']['epoch_num'],
        step_each_epoch=len(train_dataloader),
        model=model)

    # build metric
    eval_class = build_metric(config['Metric'])
    # load pretrain model
    pre_best_model_dict = load_model(config, model, optimizer)

    logger.info('train dataloader has {} iters, valid dataloader has {} iters'.
                format(len(train_dataloader), len(valid_dataloader)))
    # build metric
    eval_class = build_metric(config['Metric'])

    logger.info('train dataloader has {} iters, valid dataloader has {} iters'.
                format(len(train_dataloader), len(valid_dataloader)))

    def eval_fn():
        metric = program.eval(model, valid_dataloader, post_process_class,
                              eval_class, False)
        if config['Architecture']['model_type'] == 'det':
            main_indicator = 'hmean'
        else:
            main_indicator = 'acc'

        logger.info("metric[{}]: {}".format(main_indicator, metric[
            main_indicator]))
        return metric[main_indicator]

    run_sensitive_analysis = False
    """
    run_sensitive_analysis=True: 
        Automatically compute the sensitivities of convolutions in a model. 
        The sensitivity of a convolution is the losses of accuracy on test dataset in 
        differenct pruned ratios. The sensitivities can be used to get a group of best 
        ratios with some condition.
    
    run_sensitive_analysis=False: 
        Set prune trim ratio to a fixed value, such as 10%. The larger the value, 
        the more convolution weights will be cropped.

    """

    if run_sensitive_analysis:
        params_sensitive = pruner.sensitive(
            eval_func=eval_fn,
            sen_file="./deploy/slim/prune/sen.pickle",
            skip_vars=[
                "conv2d_57.w_0", "conv2d_transpose_2.w_0",
                "conv2d_transpose_3.w_0"
            ])
        logger.info(
            "The sensitivity analysis results of model parameters saved in sen.pickle"
        )
        # calculate pruned params's ratio
        params_sensitive = pruner._get_ratios_by_loss(
            params_sensitive, loss=0.02)
        for key in params_sensitive.keys():
            logger.info("{}, {}".format(key, params_sensitive[key]))
    else:
        params_sensitive = {}
        for param in model.parameters():
            if 'transpose' not in param.name and 'linear' not in param.name:
                # set prune ratio as 10%. The larger the value, the more convolution weights will be cropped
                params_sensitive[param.name] = 0.1

    plan = pruner.prune_vars(params_sensitive, [0])

    flops = paddle.flops(model, input_shape)
    logger.info("FLOPs after pruning: {}".format(flops))

    # start train

    program.train(config, train_dataloader, valid_dataloader, device, model,
                  loss_class, optimizer, lr_scheduler, post_process_class,
                  eval_class, pre_best_model_dict, logger, vdl_writer)


if __name__ == '__main__':
    config, device, logger, vdl_writer = program.preprocess(is_train=True)
    main(config, device, logger, vdl_writer)