preprocess_op.cpp 4.34 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "paddle_api.h"
#include "paddle_inference_api.h"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>

#include <cstring>
#include <fstream>
#include <numeric>

#include <include/preprocess_op.h>

namespace PaddleOCR {

void Permute::Run(const cv::Mat *im, float *data) {
  int rh = im->rows;
  int rw = im->cols;
  int rc = im->channels();
  for (int i = 0; i < rc; ++i) {
    cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, data + i * rh * rw), i);
  }
}

void PermuteBatch::Run(const std::vector<cv::Mat> imgs, float *data) {
  for (int j = 0; j < imgs.size(); j++) {
    int rh = imgs[j].rows;
    int rw = imgs[j].cols;
    int rc = imgs[j].channels();
    for (int i = 0; i < rc; ++i) {
      cv::extractChannel(
          imgs[j], cv::Mat(rh, rw, CV_32FC1, data + (j * rc + i) * rh * rw), i);
    }
  }
}

void Normalize::Run(cv::Mat *im, const std::vector<float> &mean,
                    const std::vector<float> &scale, const bool is_scale) {
  double e = 1.0;
  if (is_scale) {
    e /= 255.0;
  }
  (*im).convertTo(*im, CV_32FC3, e);
  std::vector<cv::Mat> bgr_channels(3);
  cv::split(*im, bgr_channels);
  for (auto i = 0; i < bgr_channels.size(); i++) {
    bgr_channels[i].convertTo(bgr_channels[i], CV_32FC1, 1.0 * scale[i],
                              (0.0 - mean[i]) * scale[i]);
  }
  cv::merge(bgr_channels, *im);
}

void ResizeImgType0::Run(const cv::Mat &img, cv::Mat &resize_img,
                         int max_size_len, float &ratio_h, float &ratio_w,
                         bool use_tensorrt) {
  int w = img.cols;
  int h = img.rows;

  float ratio = 1.f;
  int max_wh = w >= h ? w : h;
  if (max_wh > max_size_len) {
    if (h > w) {
      ratio = float(max_size_len) / float(h);
    } else {
      ratio = float(max_size_len) / float(w);
    }
  }

  int resize_h = int(float(h) * ratio);
  int resize_w = int(float(w) * ratio);

  resize_h = max(int(round(float(resize_h) / 32) * 32), 32);
  resize_w = max(int(round(float(resize_w) / 32) * 32), 32);

  cv::resize(img, resize_img, cv::Size(resize_w, resize_h));
  ratio_h = float(resize_h) / float(h);
  ratio_w = float(resize_w) / float(w);
}

void CrnnResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img, float wh_ratio,
                        bool use_tensorrt,
                        const std::vector<int> &rec_image_shape) {
  int imgC, imgH, imgW;
  imgC = rec_image_shape[0];
  imgH = rec_image_shape[1];
  imgW = rec_image_shape[2];

  imgW = int(imgH * wh_ratio);

  float ratio = float(img.cols) / float(img.rows);
  int resize_w, resize_h;

  if (ceilf(imgH * ratio) > imgW)
    resize_w = imgW;
  else
    resize_w = int(ceilf(imgH * ratio));

  cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
             cv::INTER_LINEAR);
  cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0,
                     int(imgW - resize_img.cols), cv::BORDER_CONSTANT,
                     {127, 127, 127});
}

void ClsResizeImg::Run(const cv::Mat &img, cv::Mat &resize_img,
                       bool use_tensorrt,
                       const std::vector<int> &rec_image_shape) {
  int imgC, imgH, imgW;
  imgC = rec_image_shape[0];
  imgH = rec_image_shape[1];
  imgW = rec_image_shape[2];

  float ratio = float(img.cols) / float(img.rows);
  int resize_w, resize_h;
  if (ceilf(imgH * ratio) > imgW)
    resize_w = imgW;
  else
    resize_w = int(ceilf(imgH * ratio));

  cv::resize(img, resize_img, cv::Size(resize_w, imgH), 0.f, 0.f,
             cv::INTER_LINEAR);
  if (resize_w < imgW) {
    cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0, imgW - resize_w,
                       cv::BORDER_CONSTANT, cv::Scalar(0, 0, 0));
  }
}

} // namespace PaddleOCR