ocr_det.cpp 6.88 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/ocr_det.h>

namespace PaddleOCR {

void DBDetector::LoadModel(const std::string &model_dir) {
  //   AnalysisConfig config;
  paddle_infer::Config config;
  config.SetModel(model_dir + "/inference.pdmodel",
                  model_dir + "/inference.pdiparams");

  if (this->use_gpu_) {
    config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
    if (this->use_tensorrt_) {
      auto precision = paddle_infer::Config::Precision::kFloat32;
      if (this->precision_ == "fp16") {
        precision = paddle_infer::Config::Precision::kHalf;
      }
      if (this->precision_ == "int8") {
        precision = paddle_infer::Config::Precision::kInt8;
      }
      config.EnableTensorRtEngine(1 << 20, 10, 3, precision, false, false);
      std::map<std::string, std::vector<int>> min_input_shape = {
          {"x", {1, 3, 50, 50}},
          {"conv2d_92.tmp_0", {1, 96, 20, 20}},
          {"conv2d_91.tmp_0", {1, 96, 10, 10}},
          {"nearest_interp_v2_1.tmp_0", {1, 96, 10, 10}},
          {"nearest_interp_v2_2.tmp_0", {1, 96, 20, 20}},
          {"nearest_interp_v2_3.tmp_0", {1, 24, 20, 20}},
          {"nearest_interp_v2_4.tmp_0", {1, 24, 20, 20}},
          {"nearest_interp_v2_5.tmp_0", {1, 24, 20, 20}},
          {"elementwise_add_7", {1, 56, 2, 2}},
          {"nearest_interp_v2_0.tmp_0", {1, 96, 2, 2}}};
      std::map<std::string, std::vector<int>> max_input_shape = {
          {"x", {1, 3, this->max_side_len_, this->max_side_len_}},
          {"conv2d_92.tmp_0", {1, 96, 400, 400}},
          {"conv2d_91.tmp_0", {1, 96, 200, 200}},
          {"nearest_interp_v2_1.tmp_0", {1, 96, 200, 200}},
          {"nearest_interp_v2_2.tmp_0", {1, 96, 400, 400}},
          {"nearest_interp_v2_3.tmp_0", {1, 24, 400, 400}},
          {"nearest_interp_v2_4.tmp_0", {1, 24, 400, 400}},
          {"nearest_interp_v2_5.tmp_0", {1, 24, 400, 400}},
          {"elementwise_add_7", {1, 56, 400, 400}},
          {"nearest_interp_v2_0.tmp_0", {1, 96, 400, 400}}};
      std::map<std::string, std::vector<int>> opt_input_shape = {
          {"x", {1, 3, 640, 640}},
          {"conv2d_92.tmp_0", {1, 96, 160, 160}},
          {"conv2d_91.tmp_0", {1, 96, 80, 80}},
          {"nearest_interp_v2_1.tmp_0", {1, 96, 80, 80}},
          {"nearest_interp_v2_2.tmp_0", {1, 96, 160, 160}},
          {"nearest_interp_v2_3.tmp_0", {1, 24, 160, 160}},
          {"nearest_interp_v2_4.tmp_0", {1, 24, 160, 160}},
          {"nearest_interp_v2_5.tmp_0", {1, 24, 160, 160}},
          {"elementwise_add_7", {1, 56, 40, 40}},
          {"nearest_interp_v2_0.tmp_0", {1, 96, 40, 40}}};

      config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
                                    opt_input_shape);
    }
  } else {
    config.DisableGpu();
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
      // cache 10 different shapes for mkldnn to avoid memory leak
      config.SetMkldnnCacheCapacity(10);
    }
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
  }
  // use zero_copy_run as default
  config.SwitchUseFeedFetchOps(false);
  // true for multiple input
  config.SwitchSpecifyInputNames(true);

  config.SwitchIrOptim(true);

  config.EnableMemoryOptim();
  // config.DisableGlogInfo();

  this->predictor_ = CreatePredictor(config);
}

void DBDetector::Run(cv::Mat &img,
                     std::vector<std::vector<std::vector<int>>> &boxes,
                     std::vector<double> &times) {
  float ratio_h{};
  float ratio_w{};

  cv::Mat srcimg;
  cv::Mat resize_img;
  img.copyTo(srcimg);

  auto preprocess_start = std::chrono::steady_clock::now();
  this->resize_op_.Run(img, resize_img, this->max_side_len_, ratio_h, ratio_w,
                       this->use_tensorrt_);

  this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
                          this->is_scale_);

  std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
  this->permute_op_.Run(&resize_img, input.data());
  auto preprocess_end = std::chrono::steady_clock::now();

  // Inference.
  auto input_names = this->predictor_->GetInputNames();
  auto input_t = this->predictor_->GetInputHandle(input_names[0]);
  input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
  auto inference_start = std::chrono::steady_clock::now();
  input_t->CopyFromCpu(input.data());

  this->predictor_->Run();

  std::vector<float> out_data;
  auto output_names = this->predictor_->GetOutputNames();
  auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
  std::vector<int> output_shape = output_t->shape();
  int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
                                std::multiplies<int>());

  out_data.resize(out_num);
  output_t->CopyToCpu(out_data.data());
  auto inference_end = std::chrono::steady_clock::now();

  auto postprocess_start = std::chrono::steady_clock::now();
  int n2 = output_shape[2];
  int n3 = output_shape[3];
  int n = n2 * n3;

  std::vector<float> pred(n, 0.0);
  std::vector<unsigned char> cbuf(n, ' ');

  for (int i = 0; i < n; i++) {
    pred[i] = float(out_data[i]);
    cbuf[i] = (unsigned char)((out_data[i]) * 255);
  }

  cv::Mat cbuf_map(n2, n3, CV_8UC1, (unsigned char *)cbuf.data());
  cv::Mat pred_map(n2, n3, CV_32F, (float *)pred.data());

  const double threshold = this->det_db_thresh_ * 255;
  const double maxvalue = 255;
  cv::Mat bit_map;
  cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY);
  if (this->use_dilation_) {
    cv::Mat dila_ele =
        cv::getStructuringElement(cv::MORPH_RECT, cv::Size(2, 2));
    cv::dilate(bit_map, bit_map, dila_ele);
  }

  boxes = post_processor_.BoxesFromBitmap(
      pred_map, bit_map, this->det_db_box_thresh_, this->det_db_unclip_ratio_,
      this->det_db_score_mode_);

  boxes = post_processor_.FilterTagDetRes(boxes, ratio_h, ratio_w, srcimg);
  auto postprocess_end = std::chrono::steady_clock::now();

  std::chrono::duration<float> preprocess_diff =
      preprocess_end - preprocess_start;
  times.push_back(double(preprocess_diff.count() * 1000));
  std::chrono::duration<float> inference_diff = inference_end - inference_start;
  times.push_back(double(inference_diff.count() * 1000));
  std::chrono::duration<float> postprocess_diff =
      postprocess_end - postprocess_start;
  times.push_back(double(postprocess_diff.count() * 1000));
}

} // namespace PaddleOCR