ocr_cls.cpp 5.32 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/ocr_cls.h>

namespace PaddleOCR {

void Classifier::Run(std::vector<cv::Mat> img_list,
                     std::vector<int> &cls_labels,
                     std::vector<float> &cls_scores,
                     std::vector<double> &times) {
  std::chrono::duration<float> preprocess_diff =
      std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
  std::chrono::duration<float> inference_diff =
      std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
  std::chrono::duration<float> postprocess_diff =
      std::chrono::steady_clock::now() - std::chrono::steady_clock::now();

  int img_num = img_list.size();
  std::vector<int> cls_image_shape = {3, 48, 192};
  for (int beg_img_no = 0; beg_img_no < img_num;
       beg_img_no += this->cls_batch_num_) {
    auto preprocess_start = std::chrono::steady_clock::now();
    int end_img_no = min(img_num, beg_img_no + this->cls_batch_num_);
    int batch_num = end_img_no - beg_img_no;
    // preprocess
    std::vector<cv::Mat> norm_img_batch;
    for (int ino = beg_img_no; ino < end_img_no; ino++) {
      cv::Mat srcimg;
      img_list[ino].copyTo(srcimg);
      cv::Mat resize_img;
      this->resize_op_.Run(srcimg, resize_img, this->use_tensorrt_,
                           cls_image_shape);

      this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
                              this->is_scale_);
      norm_img_batch.push_back(resize_img);
    }
    std::vector<float> input(batch_num * cls_image_shape[0] *
                                 cls_image_shape[1] * cls_image_shape[2],
                             0.0f);
    this->permute_op_.Run(norm_img_batch, input.data());
    auto preprocess_end = std::chrono::steady_clock::now();
    preprocess_diff += preprocess_end - preprocess_start;

    // inference.
    auto input_names = this->predictor_->GetInputNames();
    auto input_t = this->predictor_->GetInputHandle(input_names[0]);
    input_t->Reshape({batch_num, cls_image_shape[0], cls_image_shape[1],
                      cls_image_shape[2]});
    auto inference_start = std::chrono::steady_clock::now();
    input_t->CopyFromCpu(input.data());
    this->predictor_->Run();

    std::vector<float> predict_batch;
    auto output_names = this->predictor_->GetOutputNames();
    auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
    auto predict_shape = output_t->shape();

    int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
                                  std::multiplies<int>());
    predict_batch.resize(out_num);

    output_t->CopyToCpu(predict_batch.data());
    auto inference_end = std::chrono::steady_clock::now();
    inference_diff += inference_end - inference_start;

    // postprocess
    auto postprocess_start = std::chrono::steady_clock::now();
    for (int batch_idx = 0; batch_idx < predict_shape[0]; batch_idx++) {
      int label = int(
          Utility::argmax(&predict_batch[batch_idx * predict_shape[1]],
                          &predict_batch[(batch_idx + 1) * predict_shape[1]]));
      float score = float(*std::max_element(
          &predict_batch[batch_idx * predict_shape[1]],
          &predict_batch[(batch_idx + 1) * predict_shape[1]]));
      cls_labels[beg_img_no + batch_idx] = label;
      cls_scores[beg_img_no + batch_idx] = score;
    }
    auto postprocess_end = std::chrono::steady_clock::now();
    postprocess_diff += postprocess_end - postprocess_start;
  }
  times.push_back(double(preprocess_diff.count() * 1000));
  times.push_back(double(inference_diff.count() * 1000));
  times.push_back(double(postprocess_diff.count() * 1000));
}

void Classifier::LoadModel(const std::string &model_dir) {
  AnalysisConfig config;
  config.SetModel(model_dir + "/inference.pdmodel",
                  model_dir + "/inference.pdiparams");

  if (this->use_gpu_) {
    config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
    if (this->use_tensorrt_) {
      auto precision = paddle_infer::Config::Precision::kFloat32;
      if (this->precision_ == "fp16") {
        precision = paddle_infer::Config::Precision::kHalf;
      }
      if (this->precision_ == "int8") {
        precision = paddle_infer::Config::Precision::kInt8;
      }
      config.EnableTensorRtEngine(1 << 20, 10, 3, precision, false, false);
    }
  } else {
    config.DisableGpu();
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
    }
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
  }

  // false for zero copy tensor
  config.SwitchUseFeedFetchOps(false);
  // true for multiple input
  config.SwitchSpecifyInputNames(true);

  config.SwitchIrOptim(true);

  config.EnableMemoryOptim();
  config.DisableGlogInfo();

  this->predictor_ = CreatePredictor(config);
}
} // namespace PaddleOCR