create_ml_io.py 4.87 KB
Newer Older
wangsen's avatar
wangsen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Copyright (c) <2015-Present> Tzutalin
# Copyright (C) 2013  MIT, Computer Science and Artificial Intelligence Laboratory. Bryan Russell, Antonio Torralba,
# William T. Freeman. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
# associated documentation files (the "Software"), to deal in the Software without restriction, including without
# limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
# Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of
# the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
# NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
# SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
# CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
#!/usr/bin/env python
# -*- coding: utf8 -*-
import json
from pathlib import Path

from libs.constants import DEFAULT_ENCODING
import os

JSON_EXT = '.json'
ENCODE_METHOD = DEFAULT_ENCODING


class CreateMLWriter:
    def __init__(self, foldername, filename, imgsize, shapes, outputfile, databasesrc='Unknown', localimgpath=None):
        self.foldername = foldername
        self.filename = filename
        self.databasesrc = databasesrc
        self.imgsize = imgsize
        self.boxlist = []
        self.localimgpath = localimgpath
        self.verified = False
        self.shapes = shapes
        self.outputfile = outputfile

    def write(self):
        if os.path.isfile(self.outputfile):
            with open(self.outputfile, "r") as file:
                input_data = file.read()
                outputdict = json.loads(input_data)
        else:
            outputdict = []

        outputimagedict = {
            "image": self.filename,
            "annotations": []
        }

        for shape in self.shapes:
            points = shape["points"]

            x1 = points[0][0]
            y1 = points[0][1]
            x2 = points[1][0]
            y2 = points[2][1]

            height, width, x, y = self.calculate_coordinates(x1, x2, y1, y2)

            shapedict = {
                "label": shape["label"],
                "coordinates": {
                    "x": x,
                    "y": y,
                    "width": width,
                    "height": height
                }
            }
            outputimagedict["annotations"].append(shapedict)

        # check if image already in output
        exists = False
        for i in range(0, len(outputdict)):
            if outputdict[i]["image"] == outputimagedict["image"]:
                exists = True
                outputdict[i] = outputimagedict
                break

        if not exists:
            outputdict.append(outputimagedict)

        Path(self.outputfile).write_text(json.dumps(outputdict), ENCODE_METHOD)

    def calculate_coordinates(self, x1, x2, y1, y2):
        if x1 < x2:
            xmin = x1
            xmax = x2
        else:
            xmin = x2
            xmax = x1
        if y1 < y2:
            ymin = y1
            ymax = y2
        else:
            ymin = y2
            ymax = y1
        width = xmax - xmin
        if width < 0:
            width = width * -1
        height = ymax - ymin
        # x and y from center of rect
        x = xmin + width / 2
        y = ymin + height / 2
        return height, width, x, y


class CreateMLReader:
    def __init__(self, jsonpath, filepath):
        self.jsonpath = jsonpath
        self.shapes = []
        self.verified = False
        self.filename = filepath.split("/")[-1:][0]
        try:
            self.parse_json()
        except ValueError:
            print("JSON decoding failed")

    def parse_json(self):
        with open(self.jsonpath, "r") as file:
            inputdata = file.read()

        outputdict = json.loads(inputdata)
        self.verified = True

        if len(self.shapes) > 0:
            self.shapes = []
        for image in outputdict:
            if image["image"] == self.filename:
                for shape in image["annotations"]:
                    self.add_shape(shape["label"], shape["coordinates"])

    def add_shape(self, label, bndbox):
        xmin = bndbox["x"] - (bndbox["width"] / 2)
        ymin = bndbox["y"] - (bndbox["height"] / 2)

        xmax = bndbox["x"] + (bndbox["width"] / 2)
        ymax = bndbox["y"] + (bndbox["height"] / 2)

        points = [(xmin, ymin), (xmax, ymin), (xmax, ymax), (xmin, ymax)]
        self.shapes.append((label, points, None, None, True))

    def get_shapes(self):
        return self.shapes