infer_rec.py 2.75 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
WenmuZhou's avatar
WenmuZhou committed
20

LDOUBLEV's avatar
LDOUBLEV committed
21
22
import os
import sys
WenmuZhou's avatar
WenmuZhou committed
23

24
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
25
sys.path.append(__dir__)
26
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
LDOUBLEV's avatar
LDOUBLEV committed
27

WenmuZhou's avatar
WenmuZhou committed
28
import paddle
tink2123's avatar
tink2123 committed
29

WenmuZhou's avatar
WenmuZhou committed
30
from ppocr.data import create_operators, transform
WenmuZhou's avatar
WenmuZhou committed
31
from ppocr.modeling.architectures import build_model
WenmuZhou's avatar
WenmuZhou committed
32
from ppocr.postprocess import build_post_process
LDOUBLEV's avatar
LDOUBLEV committed
33
from ppocr.utils.save_load import init_model
WenmuZhou's avatar
WenmuZhou committed
34
from ppocr.utils.utility import get_image_file_list
WenmuZhou's avatar
WenmuZhou committed
35
import tools.program as program
LDOUBLEV's avatar
LDOUBLEV committed
36
37
38


def main():
WenmuZhou's avatar
WenmuZhou committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
    global_config = config['Global']

    # build post process
    post_process_class = build_post_process(config['PostProcess'],
                                            global_config)

    # build model
    if hasattr(post_process_class, 'character'):
        config['Architecture']["Head"]['out_channels'] = len(
            getattr(post_process_class, 'character'))

    model = build_model(config['Architecture'])

    init_model(config, model, logger)

    # create data ops
    transforms = []
WenmuZhou's avatar
WenmuZhou committed
56
    for op in config['Eval']['dataset']['transforms']:
WenmuZhou's avatar
WenmuZhou committed
57
58
59
60
61
        op_name = list(op)[0]
        if 'Label' in op_name:
            continue
        elif op_name in ['RecResizeImg']:
            op[op_name]['infer_mode'] = True
WenmuZhou's avatar
WenmuZhou committed
62
        elif op_name == 'KeepKeys':
WenmuZhou's avatar
WenmuZhou committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
            op[op_name]['keep_keys'] = ['image']
        transforms.append(op)
    global_config['infer_mode'] = True
    ops = create_operators(transforms, global_config)

    model.eval()
    for file in get_image_file_list(config['Global']['infer_img']):
        logger.info("infer_img: {}".format(file))
        with open(file, 'rb') as f:
            img = f.read()
            data = {'image': img}
        batch = transform(data, ops)

        images = np.expand_dims(batch[0], axis=0)
WenmuZhou's avatar
WenmuZhou committed
77
        images = paddle.to_tensor(images)
WenmuZhou's avatar
WenmuZhou committed
78
79
80
81
82
83
        preds = model(images)
        post_result = post_process_class(preds)
        for rec_reuslt in post_result:
            logger.info('\t result: {}'.format(rec_reuslt))
    logger.info("success!")

LDOUBLEV's avatar
LDOUBLEV committed
84
85

if __name__ == '__main__':
WenmuZhou's avatar
WenmuZhou committed
86
    config, device, logger, vdl_writer = program.preprocess()
LDOUBLEV's avatar
LDOUBLEV committed
87
    main()