rec_mtb_nrtr.yml 2.59 KB
Newer Older
Topdu's avatar
Topdu committed
1
2
3
4
5
Global:
  use_gpu: True
  epoch_num: 21
  log_smooth_window: 20
  print_batch_step: 10
Topdu's avatar
Topdu committed
6
<<<<<<< HEAD
Topdu's avatar
Topdu committed
7
8
9
10
11
  save_model_dir: ./output/rec/nrtr_final/
  save_epoch_step: 1
  # evaluation is run every 2000 iterations
  eval_batch_step: [0, 2000]
  cal_metric_during_train: True
Topdu's avatar
Topdu committed
12
13
14
15
16
17
18
=======
  save_model_dir: ./output/rec/piloptimnrtr/
  save_epoch_step: 1
  # evaluation is run every 2000 iterations
  eval_batch_step: [0, 2000]
  cal_metric_during_train: False
>>>>>>> 9c67a7f... add rec_nrtr
Topdu's avatar
Topdu committed
19
20
21
22
23
24
  pretrained_model:
  checkpoints: 
  save_inference_dir:
  use_visualdl: False
  infer_img: doc/imgs_words_en/word_10.png
  # for data or label process
Topdu's avatar
Topdu committed
25
<<<<<<< HEAD
Topdu's avatar
Topdu committed
26
27
28
29
30
  character_dict_path: 
  character_type: EN_symbol
  max_text_length: 25
  infer_mode: False
  use_space_char: True
Topdu's avatar
Topdu committed
31
32
33
34
35
36
37
=======
  character_dict_path: ppocr/utils/dict_99.txt
  character_type: dict_99
  max_text_length: 25
  infer_mode: False
  use_space_char: False
>>>>>>> 9c67a7f... add rec_nrtr
Topdu's avatar
Topdu committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
  save_res_path: ./output/rec/predicts_nrtr.txt

Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.99
  clip_norm: 5.0
  lr:
    name: Cosine
    learning_rate: 0.0005
    warmup_epoch: 2
  regularizer:
    name: 'L2'
    factor: 0.

Architecture:
  model_type: rec
  algorithm: NRTR
  in_channels: 1
  Transform:
  Backbone:
    name: MTB
    cnn_num: 2
  Head:
    name: TransformerOptim
    d_model: 512
    num_encoder_layers: 6
    beam_size: -1    # When Beam size is greater than 0, it means to use beam search when evaluation.
    

Loss:
  name: NRTRLoss
  smoothing: True

PostProcess:
  name: NRTRLabelDecode

Metric:
  name: RecMetric
  main_indicator: acc

Train:
  dataset:
    name: LMDBDataSet
    data_dir: /paddle/data/ocr_data/training/
    transforms:
      - NRTRDecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - NRTRLabelEncode: # Class handling label
      - PILResize:
          image_shape: [100, 32]
      - KeepKeys:
          keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  loader:
    shuffle: True
    batch_size_per_card: 512
    drop_last: True
    num_workers: 8

Eval:
  dataset:
    name: LMDBDataSet
    data_dir: /paddle/data/ocr_data/evaluation/
    transforms:
      - NRTRDecodeImage: # load image
          img_mode: BGR
          channel_first: False
      - NRTRLabelEncode: # Class handling label
      - PILResize:
          image_shape: [100, 32]
      - KeepKeys:
          keep_keys: ['image', 'label', 'length'] # dataloader will return list in this order
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 256
    num_workers: 1
    use_shared_memory: False