main.cpp 7.82 KB
Newer Older
MissPenguin's avatar
MissPenguin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "glog/logging.h"
#include "omp.h"
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include <chrono>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <vector>

#include <cstring>
#include <fstream>
#include <numeric>

#include <glog/logging.h>
#include <include/ocr_det.h>
#include <include/ocr_rec.h>
#include <sys/stat.h>

#include <gflags/gflags.h>

DEFINE_bool(use_gpu, false, "Infering with GPU or CPU.");
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute.");
DEFINE_int32(gpu_mem, 4000, "GPU id when infering with GPU.");
DEFINE_int32(cpu_math_library_num_threads, 10, "Num of threads with CPU.");
DEFINE_bool(use_mkldnn, false, "Whether use mkldnn with CPU.");

DEFINE_string(image_dir, "", "Dir of input image.");
DEFINE_string(det_model_dir, "", "Path of det inference model.");
DEFINE_int32(max_side_len, 960, "max_side_len of input image.");
DEFINE_double(det_db_thresh, 0.3, "Threshold of det_db_thresh.");
DEFINE_double(det_db_box_thresh, 0.5, "Threshold of det_db_box_thresh.");
DEFINE_double(det_db_unclip_ratio, 1.6, "Threshold of det_db_unclip_ratio.");
DEFINE_bool(use_polygon_score, false, "Whether use polygon score.");
DEFINE_bool(visualize, true, "Whether show the detection results.");

DEFINE_bool(use_angle_cls, false, "Whether use use_angle_cls.");
DEFINE_string(cls_model_dir, "", "Path of cls inference model.");
DEFINE_double(cls_thresh, 0.9, "Threshold of cls_thresh.");

DEFINE_string(rec_model_dir, "", "Path of rec inference model.");
DEFINE_string(char_list_file, "../../ppocr/utils/ppocr_keys_v1.txt", "Path of dictionary.");

DEFINE_bool(use_tensorrt, false, "Whether use tensorrt.");
DEFINE_bool(use_fp16, false, "Whether use fp16 when use tensorrt.");

using namespace std;
using namespace cv;
using namespace PaddleOCR;


static bool PathExists(const std::string& path){
#ifdef _WIN32
  struct _stat buffer;
  return (_stat(path.c_str(), &buffer) == 0);
#else
  struct stat buffer;
  return (stat(path.c_str(), &buffer) == 0);
#endif  // !_WIN32
}


cv::Mat GetRotateCropImage(const cv::Mat &srcimage,
                            std::vector<std::vector<int>> box) {
  cv::Mat image;
  srcimage.copyTo(image);
  std::vector<std::vector<int>> points = box;

  int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
  int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
  int left = int(*std::min_element(x_collect, x_collect + 4));
  int right = int(*std::max_element(x_collect, x_collect + 4));
  int top = int(*std::min_element(y_collect, y_collect + 4));
  int bottom = int(*std::max_element(y_collect, y_collect + 4));

  cv::Mat img_crop;
  image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);

  for (int i = 0; i < points.size(); i++) {
    points[i][0] -= left;
    points[i][1] -= top;
  }

  int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
                                pow(points[0][1] - points[1][1], 2)));
  int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
                                 pow(points[0][1] - points[3][1], 2)));

  cv::Point2f pts_std[4];
  pts_std[0] = cv::Point2f(0., 0.);
  pts_std[1] = cv::Point2f(img_crop_width, 0.);
  pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
  pts_std[3] = cv::Point2f(0.f, img_crop_height);

  cv::Point2f pointsf[4];
  pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
  pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
  pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
  pointsf[3] = cv::Point2f(points[3][0], points[3][1]);

  cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);

  cv::Mat dst_img;
  cv::warpPerspective(img_crop, dst_img, M,
                      cv::Size(img_crop_width, img_crop_height),
                      cv::BORDER_REPLICATE);

  if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
    cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
    cv::transpose(dst_img, srcCopy);
    cv::flip(srcCopy, srcCopy, 0);
    return srcCopy;
  } else {
    return dst_img;
  }
}


int main(int argc, char **argv) {
  // Parsing command-line
  google::ParseCommandLineFlags(&argc, &argv, true);
  if ((FLAGS_det_model_dir.empty() || FLAGS_rec_model_dir.empty() || FLAGS_image_dir.empty()) ||
     (FLAGS_use_angle_cls && FLAGS_cls_model_dir.empty())) {
    std::cout << "Usage[default]: ./ocr_system --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
    std::cout << "Usage[use angle cls]: ./ocr_system --det_model_dir=/PATH/TO/DET_INFERENCE_MODEL/ "
                << "--use_angle_cls=true "
                << "--cls_model_dir=/PATH/TO/CLS_INFERENCE_MODEL/ "
                << "--rec_model_dir=/PATH/TO/REC_INFERENCE_MODEL/ "
                << "--image_dir=/PATH/TO/INPUT/IMAGE/" << std::endl;
    return -1;
  }

  if (!PathExists(FLAGS_image_dir)) {
      std::cerr << "[ERROR] image path not exist! image_dir: " << FLAGS_image_dir << endl;
      exit(1);      
  }
  std::vector<cv::String> cv_all_img_names;
  cv::glob(FLAGS_image_dir, cv_all_img_names);
  std::cout << "total images num: " << cv_all_img_names.size() << endl;

  DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                 FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads, 
                 FLAGS_use_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
                 FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
                 FLAGS_use_polygon_score, FLAGS_visualize,
                 FLAGS_use_tensorrt, FLAGS_use_fp16);

  Classifier *cls = nullptr;
  if (FLAGS_use_angle_cls) {
    cls = new Classifier(FLAGS_cls_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                         FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
                         FLAGS_use_mkldnn, FLAGS_cls_thresh,
                         FLAGS_use_tensorrt, FLAGS_use_fp16);
  }

  CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
                     FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
                     FLAGS_use_mkldnn, FLAGS_char_list_file,
                     FLAGS_use_tensorrt, FLAGS_use_fp16);

  auto start = std::chrono::system_clock::now();

  for (int i = 0; i < cv_all_img_names.size(); ++i) {
    LOG(INFO) << "The predict img: " << cv_all_img_names[i];

    cv::Mat srcimg = cv::imread(FLAGS_image_dir, cv::IMREAD_COLOR);
    if (!srcimg.data) {
      std::cerr << "[ERROR] image read failed! image path: " << cv_all_img_names[i] << endl;
      exit(1);
    }
    std::vector<std::vector<std::vector<int>>> boxes;

    det.Run(srcimg, boxes);
  
    cv::Mat crop_img;
    for (int j = 0; j < boxes.size(); j++) {
      crop_img = GetRotateCropImage(srcimg, boxes[j]);

      if (cls != nullptr) {
        crop_img = cls->Run(crop_img);
      }
      rec.Run(crop_img);
    }
      
    auto end = std::chrono::system_clock::now();
    auto duration =
        std::chrono::duration_cast<std::chrono::microseconds>(end - start);
    std::cout << "Cost  "
              << double(duration.count()) *
                     std::chrono::microseconds::period::num /
                     std::chrono::microseconds::period::den
              << "s" << std::endl;
  }

  return 0;
}