ocr_rec.cpp 6.26 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/ocr_rec.h>
MissPenguin's avatar
MissPenguin committed
16
#include <include/preprocess_op.cpp>
littletomatodonkey's avatar
littletomatodonkey committed
17
18
19

namespace PaddleOCR {

MissPenguin's avatar
MissPenguin committed
20
void CRNNRecognizer::Run(cv::Mat &img) {
littletomatodonkey's avatar
littletomatodonkey committed
21
22
23
24
  cv::Mat srcimg;
  img.copyTo(srcimg);
  cv::Mat resize_img;

MissPenguin's avatar
MissPenguin committed
25
  float wh_ratio = float(srcimg.cols) / float(srcimg.rows);
littletomatodonkey's avatar
littletomatodonkey committed
26

MissPenguin's avatar
MissPenguin committed
27
  this->resize_op_.Run(srcimg, resize_img, wh_ratio, this->use_tensorrt_);
littletomatodonkey's avatar
littletomatodonkey committed
28

MissPenguin's avatar
MissPenguin committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
  this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
                          this->is_scale_);

  std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);

  this->permute_op_.Run(&resize_img, input.data());

  // Inference.
  auto input_names = this->predictor_->GetInputNames();
  auto input_t = this->predictor_->GetInputHandle(input_names[0]);
  input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
  input_t->CopyFromCpu(input.data());
  this->predictor_->Run();

  std::vector<float> predict_batch;
  auto output_names = this->predictor_->GetOutputNames();
  auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
  auto predict_shape = output_t->shape();

  int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
                                std::multiplies<int>());
  predict_batch.resize(out_num);

  output_t->CopyToCpu(predict_batch.data());

  // ctc decode
  std::vector<std::string> str_res;
  int argmax_idx;
  int last_index = 0;
  float score = 0.f;
  int count = 0;
  float max_value = 0.0f;

  for (int n = 0; n < predict_shape[1]; n++) {
    argmax_idx =
        int(Utility::argmax(&predict_batch[n * predict_shape[2]],
                            &predict_batch[(n + 1) * predict_shape[2]]));
    max_value =
        float(*std::max_element(&predict_batch[n * predict_shape[2]],
                                &predict_batch[(n + 1) * predict_shape[2]]));

    if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
      score += max_value;
      count += 1;
      str_res.push_back(label_list_[argmax_idx]);
WenmuZhou's avatar
WenmuZhou committed
74
    }
MissPenguin's avatar
MissPenguin committed
75
76
77
78
79
    last_index = argmax_idx;
  }
  score /= count;
  for (int i = 0; i < str_res.size(); i++) {
    std::cout << str_res[i];
littletomatodonkey's avatar
littletomatodonkey committed
80
  }
MissPenguin's avatar
MissPenguin committed
81
  std::cout << "\tscore: " << score << std::endl;
littletomatodonkey's avatar
littletomatodonkey committed
82
83
}

littletomatodonkey's avatar
littletomatodonkey committed
84
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
LDOUBLEV's avatar
LDOUBLEV committed
85
86
  //   AnalysisConfig config;
  paddle_infer::Config config;
WenmuZhou's avatar
WenmuZhou committed
87
88
  config.SetModel(model_dir + "/inference.pdmodel",
                  model_dir + "/inference.pdiparams");
littletomatodonkey's avatar
littletomatodonkey committed
89

littletomatodonkey's avatar
littletomatodonkey committed
90
91
  if (this->use_gpu_) {
    config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
92
93
94
95
96
97
    if (this->use_tensorrt_) {
      config.EnableTensorRtEngine(
          1 << 20, 10, 3,
          this->use_fp16_ ? paddle_infer::Config::Precision::kHalf
                          : paddle_infer::Config::Precision::kFloat32,
          false, false);
LDOUBLEV's avatar
LDOUBLEV committed
98
99
100
101
102
103
104
105
106
      std::map<std::string, std::vector<int>> min_input_shape = {
          {"x", {1, 3, 32, 10}}};
      std::map<std::string, std::vector<int>> max_input_shape = {
          {"x", {1, 3, 32, 2000}}};
      std::map<std::string, std::vector<int>> opt_input_shape = {
          {"x", {1, 3, 32, 320}}};

      config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
                                    opt_input_shape);
107
    }
littletomatodonkey's avatar
littletomatodonkey committed
108
109
  } else {
    config.DisableGpu();
littletomatodonkey's avatar
littletomatodonkey committed
110
111
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
WenmuZhou's avatar
WenmuZhou committed
112
113
      // cache 10 different shapes for mkldnn to avoid memory leak
      config.SetMkldnnCacheCapacity(10);
littletomatodonkey's avatar
littletomatodonkey committed
114
    }
littletomatodonkey's avatar
littletomatodonkey committed
115
116
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
  }
littletomatodonkey's avatar
littletomatodonkey committed
117

LDOUBLEV's avatar
LDOUBLEV committed
118
  config.SwitchUseFeedFetchOps(false);
littletomatodonkey's avatar
littletomatodonkey committed
119
  // true for multiple input
littletomatodonkey's avatar
littletomatodonkey committed
120
  config.SwitchSpecifyInputNames(true);
littletomatodonkey's avatar
littletomatodonkey committed
121
122
123
124

  config.SwitchIrOptim(true);

  config.EnableMemoryOptim();
littletomatodonkey's avatar
littletomatodonkey committed
125
  config.DisableGlogInfo();
littletomatodonkey's avatar
littletomatodonkey committed
126

LDOUBLEV's avatar
LDOUBLEV committed
127
  this->predictor_ = CreatePredictor(config);
littletomatodonkey's avatar
littletomatodonkey committed
128
129
}

littletomatodonkey's avatar
littletomatodonkey committed
130
131
cv::Mat CRNNRecognizer::GetRotateCropImage(const cv::Mat &srcimage,
                                           std::vector<std::vector<int>> box) {
littletomatodonkey's avatar
littletomatodonkey committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
  cv::Mat image;
  srcimage.copyTo(image);
  std::vector<std::vector<int>> points = box;

  int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
  int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
  int left = int(*std::min_element(x_collect, x_collect + 4));
  int right = int(*std::max_element(x_collect, x_collect + 4));
  int top = int(*std::min_element(y_collect, y_collect + 4));
  int bottom = int(*std::max_element(y_collect, y_collect + 4));

  cv::Mat img_crop;
  image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);

  for (int i = 0; i < points.size(); i++) {
    points[i][0] -= left;
    points[i][1] -= top;
  }

  int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
                                pow(points[0][1] - points[1][1], 2)));
  int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
                                 pow(points[0][1] - points[3][1], 2)));

  cv::Point2f pts_std[4];
  pts_std[0] = cv::Point2f(0., 0.);
  pts_std[1] = cv::Point2f(img_crop_width, 0.);
  pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
  pts_std[3] = cv::Point2f(0.f, img_crop_height);

  cv::Point2f pointsf[4];
  pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
  pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
  pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
  pointsf[3] = cv::Point2f(points[3][0], points[3][1]);

  cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);

  cv::Mat dst_img;
  cv::warpPerspective(img_crop, dst_img, M,
                      cv::Size(img_crop_width, img_crop_height),
                      cv::BORDER_REPLICATE);

  if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
    cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
    cv::transpose(dst_img, srcCopy);
    cv::flip(srcCopy, srcCopy, 0);
    return srcCopy;
  } else {
    return dst_img;
  }
}

littletomatodonkey's avatar
littletomatodonkey committed
185
} // namespace PaddleOCR