"deploy/paddle2onnx/predict_det.py" did not exist on "b37c597d173ac24723df372527af508d03f052aa"
vqa_utils.py 14.6 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import argparse
import cv2
import random
import numpy as np
import imghdr
from copy import deepcopy

import paddle

from PIL import Image, ImageDraw, ImageFont


zhoujun's avatar
zhoujun committed
28
29
30
31
32
33
def set_seed(seed):
    random.seed(seed)
    np.random.seed(seed)
    paddle.seed(seed)


littletomatodonkey's avatar
littletomatodonkey committed
34
def get_bio_label_maps(label_map_path):
WenmuZhou's avatar
WenmuZhou committed
35
    with open(label_map_path, "r", encoding='utf-8') as fin:
littletomatodonkey's avatar
littletomatodonkey committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
        lines = fin.readlines()
    lines = [line.strip() for line in lines]
    if "O" not in lines:
        lines.insert(0, "O")
    labels = []
    for line in lines:
        if line == "O":
            labels.append("O")
        else:
            labels.append("B-" + line)
            labels.append("I-" + line)
    label2id_map = {label: idx for idx, label in enumerate(labels)}
    id2label_map = {idx: label for idx, label in enumerate(labels)}
    return label2id_map, id2label_map


def get_image_file_list(img_file):
    imgs_lists = []
    if img_file is None or not os.path.exists(img_file):
        raise Exception("not found any img file in {}".format(img_file))

    img_end = {'jpg', 'bmp', 'png', 'jpeg', 'rgb', 'tif', 'tiff', 'gif', 'GIF'}
    if os.path.isfile(img_file) and imghdr.what(img_file) in img_end:
        imgs_lists.append(img_file)
    elif os.path.isdir(img_file):
        for single_file in os.listdir(img_file):
            file_path = os.path.join(img_file, single_file)
            if os.path.isfile(file_path) and imghdr.what(file_path) in img_end:
                imgs_lists.append(file_path)
    if len(imgs_lists) == 0:
        raise Exception("not found any img file in {}".format(img_file))
    imgs_lists = sorted(imgs_lists)
    return imgs_lists


def draw_ser_results(image,
                     ocr_results,
WenmuZhou's avatar
add re  
WenmuZhou committed
73
                     font_path="../../doc/fonts/simfang.ttf",
littletomatodonkey's avatar
littletomatodonkey committed
74
                     font_size=18):
WenmuZhou's avatar
add re  
WenmuZhou committed
75
    np.random.seed(2021)
littletomatodonkey's avatar
littletomatodonkey committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    color = (np.random.permutation(range(255)),
             np.random.permutation(range(255)),
             np.random.permutation(range(255)))
    color_map = {
        idx: (color[0][idx], color[1][idx], color[2][idx])
        for idx in range(1, 255)
    }
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    img_new = image.copy()
    draw = ImageDraw.Draw(img_new)

    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
    for ocr_info in ocr_results:
        if ocr_info["pred_id"] not in color_map:
            continue
        color = color_map[ocr_info["pred_id"]]
        text = "{}: {}".format(ocr_info["pred"], ocr_info["text"])
WenmuZhou's avatar
add re  
WenmuZhou committed
94
95

        draw_box_txt(ocr_info["bbox"], text, draw, font, font_size, color)
littletomatodonkey's avatar
littletomatodonkey committed
96
97
98
99
100

    img_new = Image.blend(image, img_new, 0.5)
    return np.array(img_new)


WenmuZhou's avatar
add re  
WenmuZhou committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
def draw_box_txt(bbox, text, draw, font, font_size, color):
    # draw ocr results outline
    bbox = ((bbox[0], bbox[1]), (bbox[2], bbox[3]))
    draw.rectangle(bbox, fill=color)

    # draw ocr results
    start_y = max(0, bbox[0][1] - font_size)
    tw = font.getsize(text)[0]
    draw.rectangle(
        [(bbox[0][0] + 1, start_y), (bbox[0][0] + tw + 1, start_y + font_size)],
        fill=(0, 0, 255))
    draw.text((bbox[0][0] + 1, start_y), text, fill=(255, 255, 255), font=font)


def draw_re_results(image,
                    result,
                    font_path="../../doc/fonts/simfang.ttf",
                    font_size=18):
    np.random.seed(0)
    if isinstance(image, np.ndarray):
        image = Image.fromarray(image)
    img_new = image.copy()
    draw = ImageDraw.Draw(img_new)

    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
    color_head = (0, 0, 255)
    color_tail = (255, 0, 0)
    color_line = (0, 255, 0)

    for ocr_info_head, ocr_info_tail in result:
        draw_box_txt(ocr_info_head["bbox"], ocr_info_head["text"], draw, font,
                     font_size, color_head)
        draw_box_txt(ocr_info_tail["bbox"], ocr_info_tail["text"], draw, font,
                     font_size, color_tail)

        center_head = (
            (ocr_info_head['bbox'][0] + ocr_info_head['bbox'][2]) // 2,
            (ocr_info_head['bbox'][1] + ocr_info_head['bbox'][3]) // 2)
        center_tail = (
            (ocr_info_tail['bbox'][0] + ocr_info_tail['bbox'][2]) // 2,
            (ocr_info_tail['bbox'][1] + ocr_info_tail['bbox'][3]) // 2)

        draw.line([center_head, center_tail], fill=color_line, width=5)

    img_new = Image.blend(image, img_new, 0.5)
    return np.array(img_new)
littletomatodonkey's avatar
littletomatodonkey committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162


# pad sentences
def pad_sentences(tokenizer,
                  encoded_inputs,
                  max_seq_len=512,
                  pad_to_max_seq_len=True,
                  return_attention_mask=True,
                  return_token_type_ids=True,
                  return_overflowing_tokens=False,
                  return_special_tokens_mask=False):
    # Padding with larger size, reshape is carried out
    max_seq_len = (
        len(encoded_inputs["input_ids"]) // max_seq_len + 1) * max_seq_len

    needs_to_be_padded = pad_to_max_seq_len and \
WenmuZhou's avatar
add re  
WenmuZhou committed
163
        max_seq_len and len(encoded_inputs["input_ids"]) < max_seq_len
littletomatodonkey's avatar
littletomatodonkey committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

    if needs_to_be_padded:
        difference = max_seq_len - len(encoded_inputs["input_ids"])
        if tokenizer.padding_side == 'right':
            if return_attention_mask:
                encoded_inputs["attention_mask"] = [1] * len(encoded_inputs[
                    "input_ids"]) + [0] * difference
            if return_token_type_ids:
                encoded_inputs["token_type_ids"] = (
                    encoded_inputs["token_type_ids"] +
                    [tokenizer.pad_token_type_id] * difference)
            if return_special_tokens_mask:
                encoded_inputs["special_tokens_mask"] = encoded_inputs[
                    "special_tokens_mask"] + [1] * difference
            encoded_inputs["input_ids"] = encoded_inputs[
                "input_ids"] + [tokenizer.pad_token_id] * difference
            encoded_inputs["bbox"] = encoded_inputs["bbox"] + [[0, 0, 0, 0]
                                                               ] * difference
    else:
        if return_attention_mask:
            encoded_inputs["attention_mask"] = [1] * len(encoded_inputs[
                "input_ids"])

    return encoded_inputs


def split_page(encoded_inputs, max_seq_len=512):
    """
    truncate is often used in training process
    """
    for key in encoded_inputs:
WenmuZhou's avatar
add re  
WenmuZhou committed
195
196
197
        if key == 'entities':
            encoded_inputs[key] = [encoded_inputs[key]]
            continue
littletomatodonkey's avatar
littletomatodonkey committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
        encoded_inputs[key] = paddle.to_tensor(encoded_inputs[key])
        if encoded_inputs[key].ndim <= 1:  # for input_ids, att_mask and so on
            encoded_inputs[key] = encoded_inputs[key].reshape([-1, max_seq_len])
        else:  # for bbox
            encoded_inputs[key] = encoded_inputs[key].reshape(
                [-1, max_seq_len, 4])
    return encoded_inputs


def preprocess(
        tokenizer,
        ori_img,
        ocr_info,
        img_size=(224, 224),
        pad_token_label_id=-100,
        max_seq_len=512,
        add_special_ids=False,
        return_attention_mask=True, ):
    ocr_info = deepcopy(ocr_info)
    height = ori_img.shape[0]
    width = ori_img.shape[1]

WenmuZhou's avatar
WenmuZhou committed
220
    img = cv2.resize(ori_img, img_size).transpose([2, 0, 1]).astype(np.float32)
littletomatodonkey's avatar
littletomatodonkey committed
221
222
223
224
225
226

    segment_offset_id = []
    words_list = []
    bbox_list = []
    input_ids_list = []
    token_type_ids_list = []
WenmuZhou's avatar
add re  
WenmuZhou committed
227
    entities = []
littletomatodonkey's avatar
littletomatodonkey committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

    for info in ocr_info:
        # x1, y1, x2, y2
        bbox = info["bbox"]
        bbox[0] = int(bbox[0] * 1000.0 / width)
        bbox[2] = int(bbox[2] * 1000.0 / width)
        bbox[1] = int(bbox[1] * 1000.0 / height)
        bbox[3] = int(bbox[3] * 1000.0 / height)

        text = info["text"]
        encode_res = tokenizer.encode(
            text, pad_to_max_seq_len=False, return_attention_mask=True)

        if not add_special_ids:
            # TODO: use tok.all_special_ids to remove
            encode_res["input_ids"] = encode_res["input_ids"][1:-1]
            encode_res["token_type_ids"] = encode_res["token_type_ids"][1:-1]
            encode_res["attention_mask"] = encode_res["attention_mask"][1:-1]

WenmuZhou's avatar
add re  
WenmuZhou committed
247
248
249
250
251
252
253
        # for re
        entities.append({
            "start": len(input_ids_list),
            "end": len(input_ids_list) + len(encode_res["input_ids"]),
            "label": "O",
        })

littletomatodonkey's avatar
littletomatodonkey committed
254
255
256
257
258
259
260
261
262
263
264
        input_ids_list.extend(encode_res["input_ids"])
        token_type_ids_list.extend(encode_res["token_type_ids"])
        bbox_list.extend([bbox] * len(encode_res["input_ids"]))
        words_list.append(text)
        segment_offset_id.append(len(input_ids_list))

    encoded_inputs = {
        "input_ids": input_ids_list,
        "token_type_ids": token_type_ids_list,
        "bbox": bbox_list,
        "attention_mask": [1] * len(input_ids_list),
WenmuZhou's avatar
add re  
WenmuZhou committed
265
        "entities": entities
littletomatodonkey's avatar
littletomatodonkey committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
    }

    encoded_inputs = pad_sentences(
        tokenizer,
        encoded_inputs,
        max_seq_len=max_seq_len,
        return_attention_mask=return_attention_mask)

    encoded_inputs = split_page(encoded_inputs)

    fake_bs = encoded_inputs["input_ids"].shape[0]

    encoded_inputs["image"] = paddle.to_tensor(img).unsqueeze(0).expand(
        [fake_bs] + list(img.shape))

    encoded_inputs["segment_offset_id"] = segment_offset_id

    return encoded_inputs


def postprocess(attention_mask, preds, id2label_map):
    if isinstance(preds, paddle.Tensor):
        preds = preds.numpy()
    preds = np.argmax(preds, axis=2)

    preds_list = [[] for _ in range(preds.shape[0])]

    # keep batch info
    for i in range(preds.shape[0]):
        for j in range(preds.shape[1]):
            if attention_mask[i][j] == 1:
                preds_list[i].append(id2label_map[preds[i][j]])

    return preds_list


def merge_preds_list_with_ocr_info(ocr_info, segment_offset_id, preds_list,
                                   label2id_map_for_draw):
    # must ensure the preds_list is generated from the same image
    preds = [p for pred in preds_list for p in pred]

    id2label_map = dict()
    for key in label2id_map_for_draw:
        val = label2id_map_for_draw[key]
        if key == "O":
            id2label_map[val] = key
        if key.startswith("B-") or key.startswith("I-"):
            id2label_map[val] = key[2:]
        else:
            id2label_map[val] = key

    for idx in range(len(segment_offset_id)):
        if idx == 0:
            start_id = 0
        else:
            start_id = segment_offset_id[idx - 1]

        end_id = segment_offset_id[idx]

        curr_pred = preds[start_id:end_id]
        curr_pred = [label2id_map_for_draw[p] for p in curr_pred]

        if len(curr_pred) <= 0:
            pred_id = 0
        else:
            counts = np.bincount(curr_pred)
            pred_id = np.argmax(counts)
        ocr_info[idx]["pred_id"] = int(pred_id)
        ocr_info[idx]["pred"] = id2label_map[int(pred_id)]
    return ocr_info


WenmuZhou's avatar
add re  
WenmuZhou committed
338
339
340
341
342
343
344
345
346
def print_arguments(args, logger=None):
    print_func = logger.info if logger is not None else print
    """print arguments"""
    print_func('-----------  Configuration Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print_func('%s: %s' % (arg, value))
    print_func('------------------------------------------------')


littletomatodonkey's avatar
littletomatodonkey committed
347
348
349
350
def parse_args():
    parser = argparse.ArgumentParser()
    # Required parameters
    # yapf: disable
WenmuZhou's avatar
add re  
WenmuZhou committed
351
352
    parser.add_argument("--model_name_or_path",
                        default=None, type=str, required=True,)
zhoujun's avatar
zhoujun committed
353
354
    parser.add_argument("--ser_model_type",
                        default='LayoutXLM', type=str)
WenmuZhou's avatar
add re  
WenmuZhou committed
355
356
357
358
359
360
361
362
363
364
    parser.add_argument("--re_model_name_or_path",
                        default=None, type=str, required=False,)
    parser.add_argument("--train_data_dir", default=None,
                        type=str, required=False,)
    parser.add_argument("--train_label_path", default=None,
                        type=str, required=False,)
    parser.add_argument("--eval_data_dir", default=None,
                        type=str, required=False,)
    parser.add_argument("--eval_label_path", default=None,
                        type=str, required=False,)
littletomatodonkey's avatar
littletomatodonkey committed
365
366
367
    parser.add_argument("--output_dir", default=None, type=str, required=True,)
    parser.add_argument("--max_seq_length", default=512, type=int,)
    parser.add_argument("--evaluate_during_training", action="store_true",)
WenmuZhou's avatar
WenmuZhou committed
368
    parser.add_argument("--num_workers", default=8, type=int,)
WenmuZhou's avatar
add re  
WenmuZhou committed
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
    parser.add_argument("--per_gpu_train_batch_size", default=8,
                        type=int, help="Batch size per GPU/CPU for training.",)
    parser.add_argument("--per_gpu_eval_batch_size", default=8,
                        type=int, help="Batch size per GPU/CPU for eval.",)
    parser.add_argument("--learning_rate", default=5e-5,
                        type=float, help="The initial learning rate for Adam.",)
    parser.add_argument("--weight_decay", default=0.0,
                        type=float, help="Weight decay if we apply some.",)
    parser.add_argument("--adam_epsilon", default=1e-8,
                        type=float, help="Epsilon for Adam optimizer.",)
    parser.add_argument("--max_grad_norm", default=1.0,
                        type=float, help="Max gradient norm.",)
    parser.add_argument("--num_train_epochs", default=3, type=int,
                        help="Total number of training epochs to perform.",)
    parser.add_argument("--warmup_steps", default=0, type=int,
                        help="Linear warmup over warmup_steps.",)
    parser.add_argument("--eval_steps", type=int, default=10,
                        help="eval every X updates steps.",)
    parser.add_argument("--seed", type=int, default=2048,
                        help="random seed for initialization",)
littletomatodonkey's avatar
littletomatodonkey committed
389

390
391
    parser.add_argument("--rec_model_dir", default=None, type=str, )
    parser.add_argument("--det_model_dir", default=None, type=str, )
WenmuZhou's avatar
add re  
WenmuZhou committed
392
393
    parser.add_argument(
        "--label_map_path", default="./labels/labels_ser.txt", type=str, required=False, )
littletomatodonkey's avatar
littletomatodonkey committed
394
    parser.add_argument("--infer_imgs", default=None, type=str, required=False)
zhoujun's avatar
zhoujun committed
395
    parser.add_argument("--resume", action='store_true')
WenmuZhou's avatar
add re  
WenmuZhou committed
396
397
    parser.add_argument("--ocr_json_path", default=None,
                        type=str, required=False, help="ocr prediction results")
littletomatodonkey's avatar
littletomatodonkey committed
398
399
400
    # yapf: enable
    args = parser.parse_args()
    return args