det_r50_dcn_fce_ctw.yml 3.28 KB
Newer Older
zhiminzhang0830's avatar
zhiminzhang0830 committed
1
2
3
4
5
Global:
  use_gpu: true
  epoch_num: 1500
  log_smooth_window: 20
  print_batch_step: 20
zhiminzhang0830's avatar
zhiminzhang0830 committed
6
  save_model_dir: ./output/det_r50_dcn_fce_ctw/
zhiminzhang0830's avatar
zhiminzhang0830 committed
7
8
9
10
  save_epoch_step: 100
  # evaluation is run every 835 iterations
  eval_batch_step: [0, 835]
  cal_metric_during_train: False
zhiminzhang0830's avatar
zhiminzhang0830 committed
11
  pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained 
zhiminzhang0830's avatar
zhiminzhang0830 committed
12
  checkpoints: 
zhiminzhang0830's avatar
zhiminzhang0830 committed
13
14
15
  save_inference_dir: 
  use_visualdl: False
  infer_img: doc/imgs_en/img_10.jpg
zhiminzhang0830's avatar
zhiminzhang0830 committed
16
  save_res_path: ./output/det_fce/predicts_fce.txt
zhiminzhang0830's avatar
zhiminzhang0830 committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67


Architecture:
  model_type: det
  algorithm: FCE
  Transform:
  Backbone:
    name: ResNet
    layers: 50
    dcn_stage: [False, True, True, True]
    out_indices: [1,2,3]
  Neck:
    name: FCEFPN
    in_channels: [512, 1024, 2048]
    out_channels: 256
    has_extra_convs: False
    extra_stage: 0
  Head:
    name: FCEHead
    in_channels: 256
    scales: [8, 16, 32]
    fourier_degree: 5
Loss:
  name: FCELoss
  fourier_degree: 5
  num_sample: 50
  
Optimizer:
  name: Adam
  beta1: 0.9
  beta2: 0.999
  lr:
    learning_rate: 0.0001
  regularizer:
    name: 'L2'
    factor: 0

PostProcess:
  name: FCEPostProcess
  scales: [8, 16, 32]
  alpha: 1.0
  beta: 1.0
  fourier_degree: 5

Metric:
  name: DetFCEMetric
  main_indicator: hmean

Train:
  dataset:
    name: SimpleDataSet
zhiminzhang0830's avatar
zhiminzhang0830 committed
68
    data_dir: ./train_data/ctw1500/imgs/
zhiminzhang0830's avatar
zhiminzhang0830 committed
69
    label_file_list: 
zhiminzhang0830's avatar
zhiminzhang0830 committed
70
      - ./train_data/ctw1500/imgs/training.txt
zhiminzhang0830's avatar
zhiminzhang0830 committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
          ignore_orientation: True
      - DetLabelEncode: # Class handling label
      - ColorJitter: 
          brightness: 0.142
          saturation: 0.5
          contrast: 0.5
      - RandomScaling: 
      - RandomCropFlip:
          crop_ratio: 0.5
      - RandomCropPolyInstances:
          crop_ratio: 0.8
          min_side_ratio: 0.3
      - RandomRotatePolyInstances:
          rotate_ratio: 0.5
          max_angle: 30
          pad_with_fixed_color: False
      - SquareResizePad:
          target_size: 800
          pad_ratio: 0.6
      - IaaAugment:
          augmenter_args:
            - { 'type': Fliplr, 'args': { 'p': 0.5 } }
      - FCENetTargets:
          fourier_degree: 5
      - NormalizeImage:
          scale: 1./255.
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: 'hwc'
      - ToCHWImage:
      - KeepKeys:
          keep_keys: ['image', 'p3_maps', 'p4_maps', 'p5_maps'] # dataloader will return list in this order
  loader:
    shuffle: True
    drop_last: False
    batch_size_per_card: 6
    num_workers: 8

Eval:
  dataset:
    name: SimpleDataSet
zhiminzhang0830's avatar
zhiminzhang0830 committed
116
    data_dir: ./train_data/ctw1500/imgs/
zhiminzhang0830's avatar
zhiminzhang0830 committed
117
    label_file_list:
zhiminzhang0830's avatar
zhiminzhang0830 committed
118
      - ./train_data/ctw1500/imgs/test.txt
zhiminzhang0830's avatar
zhiminzhang0830 committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
    transforms:
      - DecodeImage: # load image
          img_mode: BGR
          channel_first: False
          ignore_orientation: True
      - DetLabelEncode: # Class handling label
      - DetResizeForTest:
          # resize_long: 1280
          rescale_img: [1080, 736]
      - NormalizeImage:
          scale: 1./255.
          mean: [0.485, 0.456, 0.406]
          std: [0.229, 0.224, 0.225]
          order: 'hwc'
      - Pad: 
      - ToCHWImage:
      - KeepKeys:
          keep_keys: ['image', 'shape', 'polys', 'ignore_tags']
  loader:
    shuffle: False
    drop_last: False
    batch_size_per_card: 1 # must be 1
    num_workers: 2