ocr_reader.py 15.9 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import cv2
import copy
import numpy as np
import math
import re
import sys
import argparse
import string
from copy import deepcopy


class DetResizeForTest(object):
    def __init__(self, **kwargs):
        super(DetResizeForTest, self).__init__()
        self.resize_type = 0
        if 'image_shape' in kwargs:
            self.image_shape = kwargs['image_shape']
            self.resize_type = 1
        elif 'limit_side_len' in kwargs:
            self.limit_side_len = kwargs['limit_side_len']
            self.limit_type = kwargs.get('limit_type', 'min')
tink2123's avatar
add qps  
tink2123 committed
36
        elif 'resize_short' in kwargs:
LDOUBLEV's avatar
LDOUBLEV committed
37
38
            self.limit_side_len = 736
            self.limit_type = 'min'
tink2123's avatar
add qps  
tink2123 committed
39
40
41
        else:
            self.resize_type = 2
            self.resize_long = kwargs.get('resize_long', 960)
LDOUBLEV's avatar
LDOUBLEV committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

    def __call__(self, data):
        img = deepcopy(data)
        src_h, src_w, _ = img.shape

        if self.resize_type == 0:
            img, [ratio_h, ratio_w] = self.resize_image_type0(img)
        elif self.resize_type == 2:
            img, [ratio_h, ratio_w] = self.resize_image_type2(img)
        else:
            img, [ratio_h, ratio_w] = self.resize_image_type1(img)

        return img

    def resize_image_type1(self, img):
        resize_h, resize_w = self.image_shape
        ori_h, ori_w = img.shape[:2]  # (h, w, c)
        ratio_h = float(resize_h) / ori_h
        ratio_w = float(resize_w) / ori_w
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
        return img, [ratio_h, ratio_w]

    def resize_image_type0(self, img):
        """
        resize image to a size multiple of 32 which is required by the network
        args:
            img(array): array with shape [h, w, c]
        return(tuple):
            img, (ratio_h, ratio_w)
        """
        limit_side_len = self.limit_side_len
        h, w, _ = img.shape

        # limit the max side
        if self.limit_type == 'max':
            if max(h, w) > limit_side_len:
                if h > w:
                    ratio = float(limit_side_len) / h
                else:
                    ratio = float(limit_side_len) / w
            else:
                ratio = 1.
        else:
            if min(h, w) < limit_side_len:
                if h < w:
                    ratio = float(limit_side_len) / h
                else:
                    ratio = float(limit_side_len) / w
            else:
                ratio = 1.
        resize_h = int(h * ratio)
        resize_w = int(w * ratio)

        resize_h = int(round(resize_h / 32) * 32)
        resize_w = int(round(resize_w / 32) * 32)

        try:
            if int(resize_w) <= 0 or int(resize_h) <= 0:
                return None, (None, None)
            img = cv2.resize(img, (int(resize_w), int(resize_h)))
        except:
            print(img.shape, resize_w, resize_h)
            sys.exit(0)
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)
        # return img, np.array([h, w])
        return img, [ratio_h, ratio_w]

    def resize_image_type2(self, img):
        h, w, _ = img.shape

        resize_w = w
        resize_h = h

        # Fix the longer side
        if resize_h > resize_w:
            ratio = float(self.resize_long) / resize_h
        else:
            ratio = float(self.resize_long) / resize_w

        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)

        max_stride = 128
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)

        return img, [ratio_h, ratio_w]


class BaseRecLabelDecode(object):
    """ Convert between text-label and text-index """

    def __init__(self, config):
        support_character_type = [
            'ch', 'en', 'EN_symbol', 'french', 'german', 'japan', 'korean',
            'it', 'xi', 'pu', 'ru', 'ar', 'ta', 'ug', 'fa', 'ur', 'rs', 'oc',
            'rsc', 'bg', 'uk', 'be', 'te', 'ka', 'chinese_cht', 'hi', 'mr',
            'ne', 'EN'
        ]
        character_type = config['character_type']
        character_dict_path = config['character_dict_path']
        use_space_char = True
        assert character_type in support_character_type, "Only {} are supported now but get {}".format(
            support_character_type, character_type)

        self.beg_str = "sos"
        self.end_str = "eos"

        if character_type == "en":
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
        elif character_type == "EN_symbol":
            # same with ASTER setting (use 94 char).
            self.character_str = string.printable[:-6]
            dict_character = list(self.character_str)
        elif character_type in support_character_type:
            self.character_str = ""
            assert character_dict_path is not None, "character_dict_path should not be None when character_type is {}".format(
                character_type)
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
                    self.character_str += line
            if use_space_char:
                self.character_str += " "
            dict_character = list(self.character_str)

        else:
            raise NotImplementedError
        self.character_type = character_type
        dict_character = self.add_special_char(dict_character)
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def add_special_char(self, dict_character):
        return dict_character

    def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        result_list = []
        ignored_tokens = self.get_ignored_tokens()
        batch_size = len(text_index)
        for batch_idx in range(batch_size):
            char_list = []
            conf_list = []
            for idx in range(len(text_index[batch_idx])):
                if text_index[batch_idx][idx] in ignored_tokens:
                    continue
                if is_remove_duplicate:
                    # only for predict
                    if idx > 0 and text_index[batch_idx][idx - 1] == text_index[
                            batch_idx][idx]:
                        continue
                char_list.append(self.character[int(text_index[batch_idx][
                    idx])])
                if text_prob is not None:
                    conf_list.append(text_prob[batch_idx][idx])
                else:
                    conf_list.append(1)
            text = ''.join(char_list)
            result_list.append((text, np.mean(conf_list)))
        return result_list

    def get_ignored_tokens(self):
        return [0]  # for ctc blank


class CTCLabelDecode(BaseRecLabelDecode):
    """ Convert between text-label and text-index """

    def __init__(
            self,
            config,
            #character_dict_path=None,
            #character_type='ch',
            #use_space_char=False,
            **kwargs):
        super(CTCLabelDecode, self).__init__(config)

    def __call__(self, preds, label=None, *args, **kwargs):
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
        text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
        if label is None:
            return text
        label = self.decode(label)
        return text, label

    def add_special_char(self, dict_character):
        dict_character = ['blank'] + dict_character
        return dict_character


class CharacterOps(object):
    """ Convert between text-label and text-index """

    def __init__(self, config):
        self.character_type = config['character_type']
        self.loss_type = config['loss_type']
        if self.character_type == "en":
            self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
            dict_character = list(self.character_str)
        elif self.character_type == "ch":
            character_dict_path = config['character_dict_path']
            self.character_str = ""
            with open(character_dict_path, "rb") as fin:
                lines = fin.readlines()
                for line in lines:
                    line = line.decode('utf-8').strip("\n").strip("\r\n")
                    self.character_str += line
            dict_character = list(self.character_str)
        elif self.character_type == "en_sensitive":
            # same with ASTER setting (use 94 char).
            self.character_str = string.printable[:-6]
            dict_character = list(self.character_str)
        else:
            self.character_str = None
        assert self.character_str is not None, \
            "Nonsupport type of the character: {}".format(self.character_str)
        self.beg_str = "sos"
        self.end_str = "eos"
        if self.loss_type == "attention":
            dict_character = [self.beg_str, self.end_str] + dict_character
        self.dict = {}
        for i, char in enumerate(dict_character):
            self.dict[char] = i
        self.character = dict_character

    def encode(self, text):
        """convert text-label into text-index.
        input:
            text: text labels of each image. [batch_size]

        output:
            text: concatenated text index for CTCLoss.
                    [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)]
            length: length of each text. [batch_size]
        """
        if self.character_type == "en":
            text = text.lower()

        text_list = []
        for char in text:
            if char not in self.dict:
                continue
            text_list.append(self.dict[char])
        text = np.array(text_list)
        return text

    def decode(self, text_index, is_remove_duplicate=False):
        """ convert text-index into text-label. """
        char_list = []
        char_num = self.get_char_num()

        if self.loss_type == "attention":
            beg_idx = self.get_beg_end_flag_idx("beg")
            end_idx = self.get_beg_end_flag_idx("end")
            ignored_tokens = [beg_idx, end_idx]
        else:
            ignored_tokens = [char_num]

        for idx in range(len(text_index)):
            if text_index[idx] in ignored_tokens:
                continue
            if is_remove_duplicate:
                if idx > 0 and text_index[idx - 1] == text_index[idx]:
                    continue
            char_list.append(self.character[text_index[idx]])
        text = ''.join(char_list)
        return text

    def get_char_num(self):
        return len(self.character)

    def get_beg_end_flag_idx(self, beg_or_end):
        if self.loss_type == "attention":
            if beg_or_end == "beg":
                idx = np.array(self.dict[self.beg_str])
            elif beg_or_end == "end":
                idx = np.array(self.dict[self.end_str])
            else:
                assert False, "Unsupport type %s in get_beg_end_flag_idx"\
                    % beg_or_end
            return idx
        else:
            err = "error in get_beg_end_flag_idx when using the loss %s"\
                % (self.loss_type)
            assert False, err


class OCRReader(object):
    def __init__(self,
                 algorithm="CRNN",
xiaoting's avatar
xiaoting committed
342
                 image_shape=[3, 48, 320],
LDOUBLEV's avatar
LDOUBLEV committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
                 char_type="ch",
                 batch_num=1,
                 char_dict_path="./ppocr_keys_v1.txt"):
        self.rec_image_shape = image_shape
        self.character_type = char_type
        self.rec_batch_num = batch_num
        char_ops_params = {}
        char_ops_params["character_type"] = char_type
        char_ops_params["character_dict_path"] = char_dict_path
        char_ops_params['loss_type'] = 'ctc'
        self.char_ops = CharacterOps(char_ops_params)
        self.label_ops = CTCLabelDecode(char_ops_params)

    def resize_norm_img(self, img, max_wh_ratio):
        imgC, imgH, imgW = self.rec_image_shape
        if self.character_type == "ch":
xiaoting's avatar
xiaoting committed
359
            imgW = int(imgH * max_wh_ratio)
LDOUBLEV's avatar
LDOUBLEV committed
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
        h = img.shape[0]
        w = img.shape[1]
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        resized_image = cv2.resize(img, (resized_w, imgH))
        resized_image = resized_image.astype('float32')
        resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)

        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

    def preprocess(self, img_list):
        img_num = len(img_list)
        norm_img_batch = []
xiaoting's avatar
xiaoting committed
380
        max_wh_ratio = 320/48.
LDOUBLEV's avatar
LDOUBLEV committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
        for ino in range(img_num):
            h, w = img_list[ino].shape[0:2]
            wh_ratio = w * 1.0 / h
            max_wh_ratio = max(max_wh_ratio, wh_ratio)

        for ino in range(img_num):
            norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio)
            norm_img = norm_img[np.newaxis, :]
            norm_img_batch.append(norm_img)
        norm_img_batch = np.concatenate(norm_img_batch)
        norm_img_batch = norm_img_batch.copy()

        return norm_img_batch[0]

    def postprocess(self, outputs, with_score=False):
396
        preds = list(outputs.values())[0]
LDOUBLEV's avatar
LDOUBLEV committed
397
398
399
400
401
402
403
404
405
        try:
            preds = preds.numpy()
        except:
            pass
        preds_idx = preds.argmax(axis=2)
        preds_prob = preds.max(axis=2)
        text = self.label_ops.decode(
            preds_idx, preds_prob, is_remove_duplicate=True)
        return text
tink2123's avatar
tink2123 committed
406

407
408

from argparse import ArgumentParser, RawDescriptionHelpFormatter
tink2123's avatar
tink2123 committed
409
import yaml
410
411


tink2123's avatar
tink2123 committed
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.conf_dict = self._parse_opt(args.opt, args.config)
        print("args config:", args.conf_dict)
        return args

    def _parse_helper(self, v):
        if v.isnumeric():
            if "." in v:
                v = float(v)
            else:
                v = int(v)
        elif v == "True" or v == "False":
            v = (v == "True")
        return v

    def _parse_opt(self, opts, conf_path):
        f = open(conf_path)
        config = yaml.load(f, Loader=yaml.Loader)
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            v = self._parse_helper(v)
447
            print(k, v, type(v))
tink2123's avatar
tink2123 committed
448
449
450
451
            cur = config
            parent = cur
            for kk in k.split("."):
                if kk not in cur:
452
453
454
                    cur[kk] = {}
                    parent = cur
                    cur = cur[kk]
tink2123's avatar
tink2123 committed
455
                else:
456
457
                    parent = cur
                    cur = cur[kk]
tink2123's avatar
tink2123 committed
458
            parent[k.split(".")[-1]] = v
459
        return config