det_db_loss.py 2.79 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
LDOUBLEV's avatar
LDOUBLEV committed
2
#
WenmuZhou's avatar
WenmuZhou committed
3
4
5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
LDOUBLEV's avatar
LDOUBLEV committed
6
7
8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
WenmuZhou's avatar
WenmuZhou committed
9
10
11
12
13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
WenmuZhou's avatar
WenmuZhou committed
14
15
16
17
"""
This code is refer from:
https://github.com/WenmuZhou/DBNet.pytorch/blob/master/models/losses/DB_loss.py
"""
LDOUBLEV's avatar
LDOUBLEV committed
18
19
20
21
22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

WenmuZhou's avatar
WenmuZhou committed
23
24
from paddle import nn

LDOUBLEV's avatar
LDOUBLEV committed
25
26
27
from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss


WenmuZhou's avatar
WenmuZhou committed
28
class DBLoss(nn.Layer):
LDOUBLEV's avatar
LDOUBLEV committed
29
30
31
32
33
34
    """
    Differentiable Binarization (DB) Loss Function
    args:
        param (dict): the super paramter for DB Loss
    """

WenmuZhou's avatar
WenmuZhou committed
35
36
37
38
39
40
41
42
    def __init__(self,
                 balance_loss=True,
                 main_loss_type='DiceLoss',
                 alpha=5,
                 beta=10,
                 ohem_ratio=3,
                 eps=1e-6,
                 **kwargs):
LDOUBLEV's avatar
LDOUBLEV committed
43
        super(DBLoss, self).__init__()
WenmuZhou's avatar
WenmuZhou committed
44
45
46
47
48
49
50
51
        self.alpha = alpha
        self.beta = beta
        self.dice_loss = DiceLoss(eps=eps)
        self.l1_loss = MaskL1Loss(eps=eps)
        self.bce_loss = BalanceLoss(
            balance_loss=balance_loss,
            main_loss_type=main_loss_type,
            negative_ratio=ohem_ratio)
LDOUBLEV's avatar
LDOUBLEV committed
52

WenmuZhou's avatar
WenmuZhou committed
53
    def forward(self, predicts, labels):
WenmuZhou's avatar
update  
WenmuZhou committed
54
        predict_maps = predicts['maps']
WenmuZhou's avatar
WenmuZhou committed
55
56
        label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = labels[
            1:]
WenmuZhou's avatar
update  
WenmuZhou committed
57
58
59
        shrink_maps = predict_maps[:, 0, :, :]
        threshold_maps = predict_maps[:, 1, :, :]
        binary_maps = predict_maps[:, 2, :, :]
LDOUBLEV's avatar
LDOUBLEV committed
60

WenmuZhou's avatar
WenmuZhou committed
61
62
63
64
65
66
        loss_shrink_maps = self.bce_loss(shrink_maps, label_shrink_map,
                                         label_shrink_mask)
        loss_threshold_maps = self.l1_loss(threshold_maps, label_threshold_map,
                                           label_threshold_mask)
        loss_binary_maps = self.dice_loss(binary_maps, label_shrink_map,
                                          label_shrink_mask)
LDOUBLEV's avatar
LDOUBLEV committed
67
68
69
        loss_shrink_maps = self.alpha * loss_shrink_maps
        loss_threshold_maps = self.beta * loss_threshold_maps

WenmuZhou's avatar
WenmuZhou committed
70
71
72
73
74
75
        loss_all = loss_shrink_maps + loss_threshold_maps \
                   + loss_binary_maps
        losses = {'loss': loss_all, \
                  "loss_shrink_maps": loss_shrink_maps, \
                  "loss_threshold_maps": loss_threshold_maps, \
                  "loss_binary_maps": loss_binary_maps}
LDOUBLEV's avatar
LDOUBLEV committed
76
        return losses