train.py 5.33 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
WenmuZhou's avatar
WenmuZhou committed
21

22
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
23
sys.path.append(__dir__)
littletomatodonkey's avatar
littletomatodonkey committed
24
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
LDOUBLEV's avatar
LDOUBLEV committed
25

WenmuZhou's avatar
WenmuZhou committed
26
27
28
import yaml
import paddle
import paddle.distributed as dist
LDOUBLEV's avatar
LDOUBLEV committed
29

WenmuZhou's avatar
WenmuZhou committed
30
from ppocr.data import build_dataloader
dyning's avatar
dyning committed
31
32
from ppocr.modeling.architectures import build_model
from ppocr.losses import build_loss
WenmuZhou's avatar
WenmuZhou committed
33
34
35
from ppocr.optimizer import build_optimizer
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
36
from ppocr.utils.save_load import load_model
WenmuZhou's avatar
WenmuZhou committed
37
from ppocr.utils.utility import set_seed
WenmuZhou's avatar
WenmuZhou committed
38
import tools.program as program
LDOUBLEV's avatar
LDOUBLEV committed
39

WenmuZhou's avatar
WenmuZhou committed
40
dist.get_world_size()
LDOUBLEV's avatar
LDOUBLEV committed
41
42


WenmuZhou's avatar
WenmuZhou committed
43
44
45
46
def main(config, device, logger, vdl_writer):
    # init dist environment
    if config['Global']['distributed']:
        dist.init_parallel_env()
LDOUBLEV's avatar
LDOUBLEV committed
47

WenmuZhou's avatar
WenmuZhou committed
48
    global_config = config['Global']
dyning's avatar
dyning committed
49

WenmuZhou's avatar
WenmuZhou committed
50
    # build dataloader
dyning's avatar
dyning committed
51
    train_dataloader = build_dataloader(config, 'Train', device, logger)
WenmuZhou's avatar
WenmuZhou committed
52
53
    if len(train_dataloader) == 0:
        logger.error(
54
55
56
57
            "No Images in train dataset, please ensure\n" +
            "\t1. The images num in the train label_file_list should be larger than or equal with batch size.\n"
            +
            "\t2. The annotation file and path in the configuration file are provided normally."
WenmuZhou's avatar
WenmuZhou committed
58
        )
WenmuZhou's avatar
WenmuZhou committed
59
        return
WenmuZhou's avatar
WenmuZhou committed
60

dyning's avatar
dyning committed
61
    if config['Eval']:
dyning's avatar
dyning committed
62
        valid_dataloader = build_dataloader(config, 'Eval', device, logger)
WenmuZhou's avatar
WenmuZhou committed
63
    else:
dyning's avatar
dyning committed
64
65
        valid_dataloader = None

WenmuZhou's avatar
WenmuZhou committed
66
    # build post process
dyning's avatar
dyning committed
67
68
69
    post_process_class = build_post_process(config['PostProcess'],
                                            global_config)

WenmuZhou's avatar
WenmuZhou committed
70
    # build model
WenmuZhou's avatar
WenmuZhou committed
71
    # for rec algorithm
WenmuZhou's avatar
WenmuZhou committed
72
    if hasattr(post_process_class, 'character'):
dyning's avatar
dyning committed
73
        char_num = len(getattr(post_process_class, 'character'))
littletomatodonkey's avatar
littletomatodonkey committed
74
75
76
77
78
79
80
81
        if config['Architecture']["algorithm"] in ["Distillation",
                                                   ]:  # distillation model
            for key in config['Architecture']["Models"]:
                config['Architecture']["Models"][key]["Head"][
                    'out_channels'] = char_num
        else:  # base rec model
            config['Architecture']["Head"]['out_channels'] = char_num

WenmuZhou's avatar
WenmuZhou committed
82
83
84
85
    model = build_model(config['Architecture'])
    if config['Global']['distributed']:
        model = paddle.DataParallel(model)

dyning's avatar
dyning committed
86
87
    # build loss
    loss_class = build_loss(config['Loss'])
dyning's avatar
dyning committed
88

WenmuZhou's avatar
WenmuZhou committed
89
    # build optim
dyning's avatar
dyning committed
90
91
    optimizer, lr_scheduler = build_optimizer(
        config['Optimizer'],
WenmuZhou's avatar
WenmuZhou committed
92
        epochs=config['Global']['epoch_num'],
dyning's avatar
dyning committed
93
        step_each_epoch=len(train_dataloader),
WenmuZhou's avatar
WenmuZhou committed
94
95
96
97
        parameters=model.parameters())

    # build metric
    eval_class = build_metric(config['Metric'])
dyning's avatar
dyning committed
98
    # load pretrain model
99
100
    pre_best_model_dict = load_model(config, model, optimizer,
                                     config['Architecture']["model_type"])
101
102
103
104
    logger.info('train dataloader has {} iters'.format(len(train_dataloader)))
    if valid_dataloader is not None:
        logger.info('valid dataloader has {} iters'.format(
            len(valid_dataloader)))
stephon's avatar
stephon committed
105

106
    use_amp = config["Global"].get("use_amp", False)
stephon's avatar
stephon committed
107
108
109
110
111
112
    if use_amp:
        AMP_RELATED_FLAGS_SETTING = {
            'FLAGS_cudnn_batchnorm_spatial_persistent': 1,
            'FLAGS_max_inplace_grad_add': 8,
        }
        paddle.fluid.set_flags(AMP_RELATED_FLAGS_SETTING)
113
114
115
        scale_loss = config["Global"].get("scale_loss", 1.0)
        use_dynamic_loss_scaling = config["Global"].get(
            "use_dynamic_loss_scaling", False)
stephon's avatar
stephon committed
116
117
118
119
120
121
        scaler = paddle.amp.GradScaler(
            init_loss_scaling=scale_loss,
            use_dynamic_loss_scaling=use_dynamic_loss_scaling)
    else:
        scaler = None

WenmuZhou's avatar
WenmuZhou committed
122
    # start train
dyning's avatar
dyning committed
123
124
    program.train(config, train_dataloader, valid_dataloader, device, model,
                  loss_class, optimizer, lr_scheduler, post_process_class,
stephon's avatar
stephon committed
125
                  eval_class, pre_best_model_dict, logger, vdl_writer, scaler)
dyning's avatar
dyning committed
126
127
128


def test_reader(config, device, logger):
WenmuZhou's avatar
WenmuZhou committed
129
    loader = build_dataloader(config, 'Train', device, logger)
130
131
132
133
    import time
    starttime = time.time()
    count = 0
    try:
dyning's avatar
dyning committed
134
        for data in loader():
135
136
137
138
            count += 1
            if count % 1 == 0:
                batch_time = time.time() - starttime
                starttime = time.time()
WenmuZhou's avatar
WenmuZhou committed
139
140
                logger.info("reader: {}, {}, {}".format(
                    count, len(data[0]), batch_time))
141
    except Exception as e:
LDOUBLEV's avatar
LDOUBLEV committed
142
143
        logger.info(e)
    logger.info("finish reader: {}, Success!".format(count))
144

dyning's avatar
dyning committed
145

LDOUBLEV's avatar
LDOUBLEV committed
146
if __name__ == '__main__':
147
    config, device, logger, vdl_writer = program.preprocess(is_train=True)
WenmuZhou's avatar
WenmuZhou committed
148
149
    seed = config['Global']['seed'] if 'seed' in config['Global'] else 1024
    set_seed(seed)
dyning's avatar
dyning committed
150
    main(config, device, logger, vdl_writer)
WenmuZhou's avatar
WenmuZhou committed
151
    # test_reader(config, device, logger)