infer_e2e.py 4.2 KB
Newer Older
Jethong's avatar
Jethong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
littletomatodonkey's avatar
littletomatodonkey committed
26
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
Jethong's avatar
Jethong committed
27
28
29
30
31
32
33
34
35
36

os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

import cv2
import json
import paddle

from ppocr.data import create_operators, transform
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
37
from ppocr.utils.save_load import load_model
Jethong's avatar
Jethong committed
38
39
40
41
42
43
44
45
46
47
from ppocr.utils.utility import get_image_file_list
import tools.program as program


def draw_e2e_res(dt_boxes, strs, config, img, img_name):
    if len(dt_boxes) > 0:
        src_im = img
        for box, str in zip(dt_boxes, strs):
            box = box.astype(np.int32).reshape((-1, 1, 2))
            cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
48
49
50
51
52
53
54
55
            cv2.putText(
                src_im,
                str,
                org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
                fontFace=cv2.FONT_HERSHEY_COMPLEX,
                fontScale=0.7,
                color=(0, 255, 0),
                thickness=1)
Jethong's avatar
Jethong committed
56
57
58
59
60
61
62
63
        save_det_path = os.path.dirname(config['Global'][
            'save_res_path']) + "/e2e_results/"
        if not os.path.exists(save_det_path):
            os.makedirs(save_det_path)
        save_path = os.path.join(save_det_path, os.path.basename(img_name))
        cv2.imwrite(save_path, src_im)
        logger.info("The e2e Image saved in {}".format(save_path))

64

Jethong's avatar
Jethong committed
65
66
67
68
69
70
def main():
    global_config = config['Global']

    # build model
    model = build_model(config['Architecture'])

71
    load_model(config, model)
Jethong's avatar
Jethong committed
72
73

    # build post process
Jethong's avatar
Jethong committed
74
75
    post_process_class = build_post_process(config['PostProcess'],
                                            global_config)
Jethong's avatar
Jethong committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

    # create data ops
    transforms = []
    for op in config['Eval']['dataset']['transforms']:
        op_name = list(op)[0]
        if 'Label' in op_name:
            continue
        elif op_name == 'KeepKeys':
            op[op_name]['keep_keys'] = ['image', 'shape']
        transforms.append(op)

    ops = create_operators(transforms, global_config)

    save_res_path = config['Global']['save_res_path']
    if not os.path.exists(os.path.dirname(save_res_path)):
        os.makedirs(os.path.dirname(save_res_path))

    model.eval()
    with open(save_res_path, "wb") as fout:
        for file in get_image_file_list(config['Global']['infer_img']):
            logger.info("infer_img: {}".format(file))
            with open(file, 'rb') as f:
                img = f.read()
                data = {'image': img}
            batch = transform(data, ops)
            images = np.expand_dims(batch[0], axis=0)
            shape_list = np.expand_dims(batch[1], axis=0)
            images = paddle.to_tensor(images)
            preds = model(images)
            post_result = post_process_class(preds, shape_list)
Jethong's avatar
Jethong committed
106
            points, strs = post_result['points'], post_result['texts']
Jethong's avatar
Jethong committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
            # write resule
            dt_boxes_json = []
            for poly, str in zip(points, strs):
                tmp_json = {"transcription": str}
                tmp_json['points'] = poly.tolist()
                dt_boxes_json.append(tmp_json)
            otstr = file + "\t" + json.dumps(dt_boxes_json) + "\n"
            fout.write(otstr.encode())
            src_img = cv2.imread(file)
            draw_e2e_res(points, strs, config, src_img, file)
    logger.info("success!")


if __name__ == '__main__':
    config, device, logger, vdl_writer = program.preprocess()
122
    main()