predict_cls.py 5.61 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
littletomatodonkey's avatar
littletomatodonkey committed
19
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
WenmuZhou's avatar
WenmuZhou committed
20

21
22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

WenmuZhou's avatar
WenmuZhou committed
23
24
25
26
27
import cv2
import copy
import numpy as np
import math
import time
WenmuZhou's avatar
WenmuZhou committed
28
import traceback
WenmuZhou's avatar
WenmuZhou committed
29
30
31
32
33
34

import tools.infer.utility as utility
from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger
from ppocr.utils.utility import get_image_file_list, check_and_read_gif

WenmuZhou's avatar
WenmuZhou committed
35
36
logger = get_logger()

WenmuZhou's avatar
WenmuZhou committed
37
38
39
40

class TextClassifier(object):
    def __init__(self, args):
        self.cls_image_shape = [int(v) for v in args.cls_image_shape.split(",")]
41
        self.cls_batch_num = args.cls_batch_num
WenmuZhou's avatar
WenmuZhou committed
42
43
44
45
46
47
        self.cls_thresh = args.cls_thresh
        postprocess_params = {
            'name': 'ClsPostProcess',
            "label_list": args.label_list,
        }
        self.postprocess_op = build_post_process(postprocess_params)
LDOUBLEV's avatar
LDOUBLEV committed
48
        self.predictor, self.input_tensor, self.output_tensors, _ = \
WenmuZhou's avatar
WenmuZhou committed
49
            utility.create_predictor(args, 'cls', logger)
tink2123's avatar
tink2123 committed
50
        self.use_onnx = args.use_onnx
WenmuZhou's avatar
WenmuZhou committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

    def resize_norm_img(self, img):
        imgC, imgH, imgW = self.cls_image_shape
        h = img.shape[0]
        w = img.shape[1]
        ratio = w / float(h)
        if math.ceil(imgH * ratio) > imgW:
            resized_w = imgW
        else:
            resized_w = int(math.ceil(imgH * ratio))
        resized_image = cv2.resize(img, (resized_w, imgH))
        resized_image = resized_image.astype('float32')
        if self.cls_image_shape[0] == 1:
            resized_image = resized_image / 255
            resized_image = resized_image[np.newaxis, :]
        else:
            resized_image = resized_image.transpose((2, 0, 1)) / 255
        resized_image -= 0.5
        resized_image /= 0.5
        padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
        padding_im[:, :, 0:resized_w] = resized_image
        return padding_im

    def __call__(self, img_list):
        img_list = copy.deepcopy(img_list)
        img_num = len(img_list)
        # Calculate the aspect ratio of all text bars
        width_list = []
        for img in img_list:
            width_list.append(img.shape[1] / float(img.shape[0]))
        # Sorting can speed up the cls process
        indices = np.argsort(np.array(width_list))

        cls_res = [['', 0.0]] * img_num
        batch_num = self.cls_batch_num
86
        elapse = 0
WenmuZhou's avatar
WenmuZhou committed
87
        for beg_img_no in range(0, img_num, batch_num):
LDOUBLEV's avatar
LDOUBLEV committed
88

WenmuZhou's avatar
WenmuZhou committed
89
90
91
            end_img_no = min(img_num, beg_img_no + batch_num)
            norm_img_batch = []
            max_wh_ratio = 0
LDOUBLEV's avatar
LDOUBLEV committed
92
            starttime = time.time()
WenmuZhou's avatar
WenmuZhou committed
93
94
95
96
97
98
99
100
101
102
            for ino in range(beg_img_no, end_img_no):
                h, w = img_list[indices[ino]].shape[0:2]
                wh_ratio = w * 1.0 / h
                max_wh_ratio = max(max_wh_ratio, wh_ratio)
            for ino in range(beg_img_no, end_img_no):
                norm_img = self.resize_norm_img(img_list[indices[ino]])
                norm_img = norm_img[np.newaxis, :]
                norm_img_batch.append(norm_img)
            norm_img_batch = np.concatenate(norm_img_batch)
            norm_img_batch = norm_img_batch.copy()
LDOUBLEV's avatar
LDOUBLEV committed
103

tink2123's avatar
tink2123 committed
104
105
106
107
108
109
110
111
112
113
            if self.use_onnx:
                input_dict = {}
                input_dict[self.input_tensor.name] = norm_img_batch
                outputs = self.predictor.run(self.output_tensors, input_dict)
                prob_out = outputs[0]
            else:
                self.input_tensor.copy_from_cpu(norm_img_batch)
                self.predictor.run()
                prob_out = self.output_tensors[0].copy_to_cpu()
                self.predictor.try_shrink_memory()
WenmuZhou's avatar
WenmuZhou committed
114
            cls_result = self.postprocess_op(prob_out)
115
            elapse += time.time() - starttime
WenmuZhou's avatar
WenmuZhou committed
116
117
            for rno in range(len(cls_result)):
                label, score = cls_result[rno]
WenmuZhou's avatar
WenmuZhou committed
118
119
120
121
                cls_res[indices[beg_img_no + rno]] = [label, score]
                if '180' in label and score > self.cls_thresh:
                    img_list[indices[beg_img_no + rno]] = cv2.rotate(
                        img_list[indices[beg_img_no + rno]], 1)
122
        return img_list, cls_res, elapse
WenmuZhou's avatar
WenmuZhou committed
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139


def main(args):
    image_file_list = get_image_file_list(args.image_dir)
    text_classifier = TextClassifier(args)
    valid_image_file_list = []
    img_list = []
    for image_file in image_file_list:
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        valid_image_file_list.append(image_file)
        img_list.append(img)
    try:
WenmuZhou's avatar
WenmuZhou committed
140
        img_list, cls_res, predict_time = text_classifier(img_list)
tink2123's avatar
tink2123 committed
141
    except Exception as E:
WenmuZhou's avatar
WenmuZhou committed
142
        logger.info(traceback.format_exc())
tink2123's avatar
tink2123 committed
143
        logger.info(E)
WenmuZhou's avatar
WenmuZhou committed
144
145
        exit()
    for ino in range(len(img_list)):
WenmuZhou's avatar
WenmuZhou committed
146
147
        logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
                                               cls_res[ino]))
WenmuZhou's avatar
WenmuZhou committed
148

WenmuZhou's avatar
WenmuZhou committed
149

WenmuZhou's avatar
WenmuZhou committed
150
151
if __name__ == "__main__":
    main(utility.parse_args())