rec_nrtr_mtb.py 1.79 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Topdu's avatar
Topdu committed
15
from paddle import nn
Topdu's avatar
Topdu committed
16
import paddle
Topdu's avatar
Topdu committed
17

18

Topdu's avatar
Topdu committed
19
20
21
22
23
24
25
26
class MTB(nn.Layer):
    def __init__(self, cnn_num, in_channels):
        super(MTB, self).__init__()
        self.block = nn.Sequential()
        self.out_channels = in_channels
        self.cnn_num = cnn_num
        if self.cnn_num == 2:
            for i in range(self.cnn_num):
27
28
29
30
31
32
33
34
35
                self.block.add_sublayer(
                    'conv_{}'.format(i),
                    nn.Conv2D(
                        in_channels=in_channels
                        if i == 0 else 32 * (2**(i - 1)),
                        out_channels=32 * (2**i),
                        kernel_size=3,
                        stride=2,
                        padding=1))
Topdu's avatar
Topdu committed
36
                self.block.add_sublayer('relu_{}'.format(i), nn.ReLU())
37
38
                self.block.add_sublayer('bn_{}'.format(i),
                                        nn.BatchNorm2D(32 * (2**i)))
Topdu's avatar
Topdu committed
39
40
41
42
43

    def forward(self, images):
        x = self.block(images)
        if self.cnn_num == 2:
            # (b, w, h, c)
Topdu's avatar
Topdu committed
44
45
46
47
            x = paddle.transpose(x, [0, 3, 2, 1])
            x_shape = paddle.shape(x)
            x = paddle.reshape(
                x, [x_shape[0], x_shape[1], x_shape[2] * x_shape[3]])
Topdu's avatar
Topdu committed
48
        return x