infer_ser_e2e.py 5.32 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
littletomatodonkey's avatar
littletomatodonkey committed
17
18
19
20

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)

littletomatodonkey's avatar
littletomatodonkey committed
21
22
23
24
25
26
27
28
import json
import cv2
import numpy as np
from copy import deepcopy
from PIL import Image

import paddle
from paddlenlp.transformers import LayoutXLMModel, LayoutXLMTokenizer, LayoutXLMForTokenClassification
WenmuZhou's avatar
WenmuZhou committed
29
from paddlenlp.transformers import LayoutLMModel, LayoutLMTokenizer, LayoutLMForTokenClassification
littletomatodonkey's avatar
littletomatodonkey committed
30
31

# relative reference
littletomatodonkey's avatar
littletomatodonkey committed
32
from vqa_utils import parse_args, get_image_file_list, draw_ser_results, get_bio_label_maps
littletomatodonkey's avatar
littletomatodonkey committed
33

littletomatodonkey's avatar
littletomatodonkey committed
34
from vqa_utils import pad_sentences, split_page, preprocess, postprocess, merge_preds_list_with_ocr_info
littletomatodonkey's avatar
littletomatodonkey committed
35

zhoujun's avatar
zhoujun committed
36
37
38
39
40
41
MODELS = {
    'LayoutXLM':
    (LayoutXLMTokenizer, LayoutXLMModel, LayoutXLMForTokenClassification),
    'LayoutLM':
    (LayoutLMTokenizer, LayoutLMModel, LayoutLMForTokenClassification)
}
littletomatodonkey's avatar
littletomatodonkey committed
42

WenmuZhou's avatar
WenmuZhou committed
43
44
45
46
47
48
49
MODELS = {
    'LayoutXLM':
    (LayoutXLMTokenizer, LayoutXLMModel, LayoutXLMForTokenClassification),
    'LayoutLM':
    (LayoutLMTokenizer, LayoutLMModel, LayoutLMForTokenClassification)
}

littletomatodonkey's avatar
littletomatodonkey committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

def trans_poly_to_bbox(poly):
    x1 = np.min([p[0] for p in poly])
    x2 = np.max([p[0] for p in poly])
    y1 = np.min([p[1] for p in poly])
    y2 = np.max([p[1] for p in poly])
    return [x1, y1, x2, y2]


def parse_ocr_info_for_ser(ocr_result):
    ocr_info = []
    for res in ocr_result:
        ocr_info.append({
            "text": res[1][0],
            "bbox": trans_poly_to_bbox(res[0]),
            "poly": res[0],
        })
    return ocr_info


WenmuZhou's avatar
add re  
WenmuZhou committed
70
71
class SerPredictor(object):
    def __init__(self, args):
WenmuZhou's avatar
WenmuZhou committed
72
        self.args = args
WenmuZhou's avatar
add re  
WenmuZhou committed
73
74
75
        self.max_seq_length = args.max_seq_length

        # init ser token and model
WenmuZhou's avatar
WenmuZhou committed
76
77
78
        tokenizer_class, base_model_class, model_class = MODELS[
            args.ser_model_type]
        self.tokenizer = tokenizer_class.from_pretrained(
WenmuZhou's avatar
add re  
WenmuZhou committed
79
            args.model_name_or_path)
WenmuZhou's avatar
WenmuZhou committed
80
        self.model = model_class.from_pretrained(args.model_name_or_path)
WenmuZhou's avatar
add re  
WenmuZhou committed
81
82
83
        self.model.eval()

        # init ocr_engine
84
85
        from paddleocr import PaddleOCR

WenmuZhou's avatar
add re  
WenmuZhou committed
86
        self.ocr_engine = PaddleOCR(
87
88
            rec_model_dir=args.rec_model_dir,
            det_model_dir=args.det_model_dir,
WenmuZhou's avatar
add re  
WenmuZhou committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
            use_angle_cls=False,
            show_log=False)
        # init dict
        label2id_map, self.id2label_map = get_bio_label_maps(
            args.label_map_path)
        self.label2id_map_for_draw = dict()
        for key in label2id_map:
            if key.startswith("I-"):
                self.label2id_map_for_draw[key] = label2id_map["B" + key[1:]]
            else:
                self.label2id_map_for_draw[key] = label2id_map[key]

    def __call__(self, img):
        ocr_result = self.ocr_engine.ocr(img, cls=False)

        ocr_info = parse_ocr_info_for_ser(ocr_result)

        inputs = preprocess(
            tokenizer=self.tokenizer,
            ori_img=img,
            ocr_info=ocr_info,
            max_seq_len=self.max_seq_length)

WenmuZhou's avatar
WenmuZhou committed
112
        if self.args.ser_model_type == 'LayoutLM':
WenmuZhou's avatar
WenmuZhou committed
113
114
115
116
117
            preds = self.model(
                input_ids=inputs["input_ids"],
                bbox=inputs["bbox"],
                token_type_ids=inputs["token_type_ids"],
                attention_mask=inputs["attention_mask"])
WenmuZhou's avatar
WenmuZhou committed
118
        elif self.args.ser_model_type == 'LayoutXLM':
WenmuZhou's avatar
WenmuZhou committed
119
120
121
122
123
124
125
            preds = self.model(
                input_ids=inputs["input_ids"],
                bbox=inputs["bbox"],
                image=inputs["image"],
                token_type_ids=inputs["token_type_ids"],
                attention_mask=inputs["attention_mask"])
            preds = preds[0]
WenmuZhou's avatar
add re  
WenmuZhou committed
126
127
128
129
130
131

        preds = postprocess(inputs["attention_mask"], preds, self.id2label_map)
        ocr_info = merge_preds_list_with_ocr_info(
            ocr_info, inputs["segment_offset_id"], preds,
            self.label2id_map_for_draw)
        return ocr_info, inputs
littletomatodonkey's avatar
littletomatodonkey committed
132
133


WenmuZhou's avatar
add re  
WenmuZhou committed
134
135
136
if __name__ == "__main__":
    args = parse_args()
    os.makedirs(args.output_dir, exist_ok=True)
littletomatodonkey's avatar
littletomatodonkey committed
137
138
139
140
141

    # get infer img list
    infer_imgs = get_image_file_list(args.infer_imgs)

    # loop for infer
WenmuZhou's avatar
add re  
WenmuZhou committed
142
    ser_engine = SerPredictor(args)
WenmuZhou's avatar
WenmuZhou committed
143
144
145
146
    with open(
            os.path.join(args.output_dir, "infer_results.txt"),
            "w",
            encoding='utf-8') as fout:
littletomatodonkey's avatar
littletomatodonkey committed
147
        for idx, img_path in enumerate(infer_imgs):
WenmuZhou's avatar
WenmuZhou committed
148
149
150
            save_img_path = os.path.join(
                args.output_dir,
                os.path.splitext(os.path.basename(img_path))[0] + "_ser.jpg")
WenmuZhou's avatar
rm _  
WenmuZhou committed
151
            print("process: [{}/{}], save result to {}".format(
WenmuZhou's avatar
WenmuZhou committed
152
                idx, len(infer_imgs), save_img_path))
littletomatodonkey's avatar
littletomatodonkey committed
153
154
155

            img = cv2.imread(img_path)

WenmuZhou's avatar
add re  
WenmuZhou committed
156
            result, _ = ser_engine(img)
littletomatodonkey's avatar
littletomatodonkey committed
157
158
            fout.write(img_path + "\t" + json.dumps(
                {
WenmuZhou's avatar
add re  
WenmuZhou committed
159
                    "ser_resule": result,
littletomatodonkey's avatar
littletomatodonkey committed
160
161
                }, ensure_ascii=False) + "\n")

WenmuZhou's avatar
add re  
WenmuZhou committed
162
            img_res = draw_ser_results(img, result)
WenmuZhou's avatar
WenmuZhou committed
163
            cv2.imwrite(save_img_path, img_res)