"doc/vscode:/vscode.git/clone" did not exist on "78d9efcf7d30462ec8c0a61f2817a5a197d039eb"
sast_postprocess.py 12.4 KB
Newer Older
MissPenguin's avatar
MissPenguin committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '..'))

import numpy as np
from .locality_aware_nms import nms_locality
MissPenguin's avatar
MissPenguin committed
27
import paddle
MissPenguin's avatar
MissPenguin committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import cv2
import time


class SASTPostProcess(object):
    """
    The post process for SAST.
    """

    def __init__(self,
                 score_thresh=0.5,
                 nms_thresh=0.2,
                 sample_pts_num=2,
                 shrink_ratio_of_width=0.3,
                 expand_scale=1.0,
                 tcl_map_thresh=0.5,
                 **kwargs):

        self.score_thresh = score_thresh
        self.nms_thresh = nms_thresh
        self.sample_pts_num = sample_pts_num
        self.shrink_ratio_of_width = shrink_ratio_of_width
        self.expand_scale = expand_scale
        self.tcl_map_thresh = tcl_map_thresh
        
        # c++ la-nms is faster, but only support python 3.5
        self.is_python35 = False
        if sys.version_info.major == 3 and sys.version_info.minor == 5:
            self.is_python35 = True
            
    def point_pair2poly(self, point_pair_list):
        """
        Transfer vertical point_pairs into poly point in clockwise.
        """
        # constract poly
        point_num = len(point_pair_list) * 2
        point_list = [0] * point_num
        for idx, point_pair in enumerate(point_pair_list):
            point_list[idx] = point_pair[0]
            point_list[point_num - 1 - idx] = point_pair[1]
        return np.array(point_list).reshape(-1, 2)
    
    def shrink_quad_along_width(self, quad, begin_width_ratio=0., end_width_ratio=1.):
        """ 
        Generate shrink_quad_along_width.
        """
        ratio_pair = np.array([[begin_width_ratio], [end_width_ratio]], dtype=np.float32)
        p0_1 = quad[0] + (quad[1] - quad[0]) * ratio_pair
        p3_2 = quad[3] + (quad[2] - quad[3]) * ratio_pair
        return np.array([p0_1[0], p0_1[1], p3_2[1], p3_2[0]])
    
    def expand_poly_along_width(self, poly, shrink_ratio_of_width=0.3):
        """
        expand poly along width.
        """
        point_num = poly.shape[0]
        left_quad = np.array([poly[0], poly[1], poly[-2], poly[-1]], dtype=np.float32)
        left_ratio = -shrink_ratio_of_width * np.linalg.norm(left_quad[0] - left_quad[3]) / \
                    (np.linalg.norm(left_quad[0] - left_quad[1]) + 1e-6)
        left_quad_expand = self.shrink_quad_along_width(left_quad, left_ratio, 1.0)
        right_quad = np.array([poly[point_num // 2 - 2], poly[point_num // 2 - 1],
                            poly[point_num // 2], poly[point_num // 2 + 1]], dtype=np.float32)
        right_ratio = 1.0 + \
                    shrink_ratio_of_width * np.linalg.norm(right_quad[0] - right_quad[3]) / \
                    (np.linalg.norm(right_quad[0] - right_quad[1]) + 1e-6)
        right_quad_expand = self.shrink_quad_along_width(right_quad, 0.0, right_ratio)
        poly[0] = left_quad_expand[0]
        poly[-1] = left_quad_expand[-1]
        poly[point_num // 2 - 1] = right_quad_expand[1]
        poly[point_num // 2] = right_quad_expand[2]
        return poly

    def restore_quad(self, tcl_map, tcl_map_thresh, tvo_map):
        """Restore quad."""
        xy_text = np.argwhere(tcl_map[:, :, 0] > tcl_map_thresh)
        xy_text = xy_text[:, ::-1] # (n, 2)

        # Sort the text boxes via the y axis
        xy_text = xy_text[np.argsort(xy_text[:, 1])]

        scores = tcl_map[xy_text[:, 1], xy_text[:, 0], 0]
        scores = scores[:, np.newaxis]

        # Restore
        point_num = int(tvo_map.shape[-1] / 2)
        assert point_num == 4
        tvo_map = tvo_map[xy_text[:, 1], xy_text[:, 0], :]
        xy_text_tile = np.tile(xy_text, (1, point_num)) # (n, point_num * 2)
        quads = xy_text_tile - tvo_map

        return scores, quads, xy_text

    def quad_area(self, quad):
        """
        compute area of a quad.
        """
        edge = [
            (quad[1][0] - quad[0][0]) * (quad[1][1] + quad[0][1]),
            (quad[2][0] - quad[1][0]) * (quad[2][1] + quad[1][1]),
            (quad[3][0] - quad[2][0]) * (quad[3][1] + quad[2][1]),
            (quad[0][0] - quad[3][0]) * (quad[0][1] + quad[3][1])
        ]
        return np.sum(edge) / 2.
        
    def nms(self, dets):
        if self.is_python35:
            import lanms
            dets = lanms.merge_quadrangle_n9(dets, self.nms_thresh)
        else:
            dets = nms_locality(dets, self.nms_thresh)
        return dets

    def cluster_by_quads_tco(self, tcl_map, tcl_map_thresh, quads, tco_map):
        """
        Cluster pixels in tcl_map based on quads.
        """
        instance_count = quads.shape[0] + 1 # contain background
        instance_label_map = np.zeros(tcl_map.shape[:2], dtype=np.int32)
        if instance_count == 1:
            return instance_count, instance_label_map

        # predict text center
        xy_text = np.argwhere(tcl_map[:, :, 0] > tcl_map_thresh)
        n = xy_text.shape[0]
        xy_text = xy_text[:, ::-1] # (n, 2)
        tco = tco_map[xy_text[:, 1], xy_text[:, 0], :] # (n, 2)
        pred_tc = xy_text - tco
        
        # get gt text center
        m = quads.shape[0]
        gt_tc = np.mean(quads, axis=1) # (m, 2)

        pred_tc_tile = np.tile(pred_tc[:, np.newaxis, :], (1, m, 1)) # (n, m, 2)
        gt_tc_tile = np.tile(gt_tc[np.newaxis, :, :], (n, 1, 1)) # (n, m, 2)
        dist_mat = np.linalg.norm(pred_tc_tile - gt_tc_tile, axis=2) # (n, m)
        xy_text_assign = np.argmin(dist_mat, axis=1) + 1 # (n,)

        instance_label_map[xy_text[:, 1], xy_text[:, 0]] = xy_text_assign
        return instance_count, instance_label_map

    def estimate_sample_pts_num(self, quad, xy_text):
        """
        Estimate sample points number.
        """
        eh = (np.linalg.norm(quad[0] - quad[3]) + np.linalg.norm(quad[1] - quad[2])) / 2.0
        ew = (np.linalg.norm(quad[0] - quad[1]) + np.linalg.norm(quad[2] - quad[3])) / 2.0

        dense_sample_pts_num = max(2, int(ew))
        dense_xy_center_line = xy_text[np.linspace(0, xy_text.shape[0] - 1, dense_sample_pts_num,
                                                endpoint=True, dtype=np.float32).astype(np.int32)]

        dense_xy_center_line_diff = dense_xy_center_line[1:] - dense_xy_center_line[:-1]
        estimate_arc_len = np.sum(np.linalg.norm(dense_xy_center_line_diff, axis=1))

        sample_pts_num = max(2, int(estimate_arc_len / eh))
        return sample_pts_num

    def detect_sast(self, tcl_map, tvo_map, tbo_map, tco_map, ratio_w, ratio_h, src_w, src_h, 
                shrink_ratio_of_width=0.3, tcl_map_thresh=0.5, offset_expand=1.0, out_strid=4.0):
        """
        first resize the tcl_map, tvo_map and tbo_map to the input_size, then restore the polys
        """
        # restore quad
        scores, quads, xy_text = self.restore_quad(tcl_map, tcl_map_thresh, tvo_map)
        dets = np.hstack((quads, scores)).astype(np.float32, copy=False)
        dets = self.nms(dets)
        if dets.shape[0] == 0:
            return []
        quads = dets[:, :-1].reshape(-1, 4, 2)

        # Compute quad area
        quad_areas = []
        for quad in quads:
            quad_areas.append(-self.quad_area(quad))

        # instance segmentation
        # instance_count, instance_label_map = cv2.connectedComponents(tcl_map.astype(np.uint8), connectivity=8)
        instance_count, instance_label_map = self.cluster_by_quads_tco(tcl_map, tcl_map_thresh, quads, tco_map)

        # restore single poly with tcl instance.
        poly_list = []
        for instance_idx in range(1, instance_count):
            xy_text = np.argwhere(instance_label_map == instance_idx)[:, ::-1]
            quad = quads[instance_idx - 1]
            q_area = quad_areas[instance_idx - 1]
            if q_area < 5:
                continue
            
            #
            len1 = float(np.linalg.norm(quad[0] -quad[1]))
            len2 = float(np.linalg.norm(quad[1] -quad[2]))
            min_len = min(len1, len2)
            if min_len < 3:
                continue

            # filter small CC
            if xy_text.shape[0] <= 0:
                continue

            # filter low confidence instance
            xy_text_scores = tcl_map[xy_text[:, 1], xy_text[:, 0], 0] 
            if np.sum(xy_text_scores) / quad_areas[instance_idx - 1] < 0.1:
            # if np.sum(xy_text_scores) / quad_areas[instance_idx - 1] < 0.05:
                continue

            # sort xy_text
            left_center_pt = np.array([[(quad[0, 0] + quad[-1, 0]) / 2.0,
                                        (quad[0, 1] + quad[-1, 1]) / 2.0]]) # (1, 2)
            right_center_pt = np.array([[(quad[1, 0] + quad[2, 0]) / 2.0,
                                        (quad[1, 1] + quad[2, 1]) / 2.0]]) # (1, 2)
            proj_unit_vec = (right_center_pt - left_center_pt) / \
                            (np.linalg.norm(right_center_pt - left_center_pt) + 1e-6)
            proj_value = np.sum(xy_text * proj_unit_vec, axis=1)
            xy_text = xy_text[np.argsort(proj_value)]

            # Sample pts in tcl map
            if self.sample_pts_num == 0:
                sample_pts_num = self.estimate_sample_pts_num(quad, xy_text)
            else:
                sample_pts_num = self.sample_pts_num
            xy_center_line = xy_text[np.linspace(0, xy_text.shape[0] - 1, sample_pts_num,
                                                endpoint=True, dtype=np.float32).astype(np.int32)]

            point_pair_list = []
            for x, y in xy_center_line:
                # get corresponding offset
                offset = tbo_map[y, x, :].reshape(2, 2)
                if offset_expand != 1.0:
                    offset_length = np.linalg.norm(offset, axis=1, keepdims=True)
                    expand_length = np.clip(offset_length * (offset_expand - 1), a_min=0.5, a_max=3.0)
                    offset_detal = offset / offset_length * expand_length
                    offset = offset + offset_detal                
                # original point
                ori_yx = np.array([y, x], dtype=np.float32)
                point_pair = (ori_yx +  offset)[:, ::-1]* out_strid / np.array([ratio_w, ratio_h]).reshape(-1, 2) 
                point_pair_list.append(point_pair)

            # ndarry: (x, 2), expand poly along width
            detected_poly = self.point_pair2poly(point_pair_list)
            detected_poly = self.expand_poly_along_width(detected_poly, shrink_ratio_of_width)
            detected_poly[:, 0] = np.clip(detected_poly[:, 0], a_min=0, a_max=src_w)
            detected_poly[:, 1] = np.clip(detected_poly[:, 1], a_min=0, a_max=src_h)
            poly_list.append(detected_poly)

        return poly_list

    def __call__(self, outs_dict, shape_list):                
        score_list = outs_dict['f_score']
        border_list = outs_dict['f_border']
        tvo_list = outs_dict['f_tvo']
        tco_list = outs_dict['f_tco']
MissPenguin's avatar
MissPenguin committed
279
280
281
282
283
        if isinstance(score_list, paddle.Tensor):
            score_list = score_list.numpy()
            border_list = border_list.numpy()
            tvo_list = tvo_list.numpy()
            tco_list = tco_list.numpy()
MissPenguin's avatar
MissPenguin committed
284
285
286
287
                    
        img_num = len(shape_list)
        poly_lists = []
        for ino in range(img_num):
MissPenguin's avatar
MissPenguin committed
288
289
290
291
            p_score = score_list[ino].transpose((1,2,0))
            p_border = border_list[ino].transpose((1,2,0))
            p_tvo = tvo_list[ino].transpose((1,2,0))
            p_tco = tco_list[ino].transpose((1,2,0))
MissPenguin's avatar
MissPenguin committed
292
293
294
295
296
297
298
299
300
            src_h, src_w, ratio_h, ratio_w = shape_list[ino]

            poly_list = self.detect_sast(p_score, p_tvo, p_border, p_tco, ratio_w, ratio_h, src_w, src_h, 
                                         shrink_ratio_of_width=self.shrink_ratio_of_width, 
                                         tcl_map_thresh=self.tcl_map_thresh, offset_expand=self.expand_scale)
            poly_lists.append({'points': np.array(poly_list)})

        return poly_lists