save_load.py 5.58 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
WenmuZhou's avatar
WenmuZhou committed
3
4
5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
LDOUBLEV's avatar
LDOUBLEV committed
6
7
8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
WenmuZhou's avatar
WenmuZhou committed
9
10
11
12
13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
16
17
18
19
20

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import errno
import os
WenmuZhou's avatar
WenmuZhou committed
21
22
import pickle
import six
LDOUBLEV's avatar
LDOUBLEV committed
23

WenmuZhou's avatar
WenmuZhou committed
24
import paddle
LDOUBLEV's avatar
LDOUBLEV committed
25

WenmuZhou's avatar
WenmuZhou committed
26
__all__ = ['init_model', 'save_model', 'load_dygraph_pretrain']
LDOUBLEV's avatar
LDOUBLEV committed
27
28


WenmuZhou's avatar
WenmuZhou committed
29
def _mkdir_if_not_exist(path, logger):
LDOUBLEV's avatar
LDOUBLEV committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
    """
    mkdir if not exists, ignore the exception when multiprocess mkdir together
    """
    if not os.path.exists(path):
        try:
            os.makedirs(path)
        except OSError as e:
            if e.errno == errno.EEXIST and os.path.isdir(path):
                logger.warning(
                    'be happy if some process has already created {}'.format(
                        path))
            else:
                raise OSError('Failed to mkdir {}'.format(path))


dyning's avatar
dyning committed
45
def load_dygraph_pretrain(model, logger, path=None, load_static_weights=False):
LDOUBLEV's avatar
LDOUBLEV committed
46
47
48
    if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
        raise ValueError("Model pretrain path {} does not "
                         "exists.".format(path))
WenmuZhou's avatar
WenmuZhou committed
49
    if load_static_weights:
dyning's avatar
dyning committed
50
        pre_state_dict = paddle.static.load_program_state(path)
WenmuZhou's avatar
WenmuZhou committed
51
52
53
54
55
56
57
        param_state_dict = {}
        model_dict = model.state_dict()
        for key in model_dict.keys():
            weight_name = model_dict[key].name
            weight_name = weight_name.replace('binarize', '').replace(
                'thresh', '')  # for DB
            if weight_name in pre_state_dict.keys():
LDOUBLEV's avatar
LDOUBLEV committed
58
59
                # logger.info('Load weight: {}, shape: {}'.format(
                #     weight_name, pre_state_dict[weight_name].shape))
WenmuZhou's avatar
WenmuZhou committed
60
61
62
63
64
65
66
67
68
69
70
                if 'encoder_rnn' in key:
                    # delete axis which is 1
                    pre_state_dict[weight_name] = pre_state_dict[
                        weight_name].squeeze()
                    # change axis
                    if len(pre_state_dict[weight_name].shape) > 1:
                        pre_state_dict[weight_name] = pre_state_dict[
                            weight_name].transpose((1, 0))
                param_state_dict[key] = pre_state_dict[weight_name]
            else:
                param_state_dict[key] = model_dict[key]
WenmuZhou's avatar
WenmuZhou committed
71
        model.set_state_dict(param_state_dict)
WenmuZhou's avatar
WenmuZhou committed
72
73
        return

WenmuZhou's avatar
WenmuZhou committed
74
75
    param_state_dict = paddle.load(path + '.pdparams')
    model.set_state_dict(param_state_dict)
WenmuZhou's avatar
WenmuZhou committed
76
    return
LDOUBLEV's avatar
LDOUBLEV committed
77

WenmuZhou's avatar
WenmuZhou committed
78
79

def init_model(config, model, logger, optimizer=None, lr_scheduler=None):
LDOUBLEV's avatar
LDOUBLEV committed
80
81
82
    """
    load model from checkpoint or pretrained_model
    """
YukSing's avatar
YukSing committed
83
84
85
    global_config = config['Global']
    checkpoints = global_config.get('checkpoints')
    pretrained_model = global_config.get('pretrained_model')
WenmuZhou's avatar
WenmuZhou committed
86
    best_model_dict = {}
LDOUBLEV's avatar
LDOUBLEV committed
87
    if checkpoints:
WenmuZhou's avatar
WenmuZhou committed
88
89
90
91
        assert os.path.exists(checkpoints + ".pdparams"), \
            "Given dir {}.pdparams not exist.".format(checkpoints)
        assert os.path.exists(checkpoints + ".pdopt"), \
            "Given dir {}.pdopt not exist.".format(checkpoints)
WenmuZhou's avatar
WenmuZhou committed
92
93
        para_dict = paddle.load(checkpoints + '.pdparams')
        opti_dict = paddle.load(checkpoints + '.pdopt')
WenmuZhou's avatar
WenmuZhou committed
94
        model.set_state_dict(para_dict)
WenmuZhou's avatar
WenmuZhou committed
95
96
97
98
99
100
101
102
103
104
105
106
107
        if optimizer is not None:
            optimizer.set_state_dict(opti_dict)

        if os.path.exists(checkpoints + '.states'):
            with open(checkpoints + '.states', 'rb') as f:
                states_dict = pickle.load(f) if six.PY2 else pickle.load(
                    f, encoding='latin1')
            best_model_dict = states_dict.get('best_model_dict', {})
            if 'epoch' in states_dict:
                best_model_dict['start_epoch'] = states_dict['epoch'] + 1

        logger.info("resume from {}".format(checkpoints))
    elif pretrained_model:
YukSing's avatar
YukSing committed
108
        load_static_weights = global_config.get('load_static_weights', False)
dyning's avatar
dyning committed
109
110
111
        if not isinstance(pretrained_model, list):
            pretrained_model = [pretrained_model]
        if not isinstance(load_static_weights, list):
dyning's avatar
dyning committed
112
            load_static_weights = [load_static_weights] * len(pretrained_model)
dyning's avatar
dyning committed
113
114
115
        for idx, pretrained in enumerate(pretrained_model):
            load_static = load_static_weights[idx]
            load_dygraph_pretrain(
dyning's avatar
dyning committed
116
                model, logger, path=pretrained, load_static_weights=load_static)
dyning's avatar
dyning committed
117
118
            logger.info("load pretrained model from {}".format(
                pretrained_model))
119
    else:
WenmuZhou's avatar
WenmuZhou committed
120
121
        logger.info('train from scratch')
    return best_model_dict
LDOUBLEV's avatar
LDOUBLEV committed
122
123


124
def save_model(model,
WenmuZhou's avatar
WenmuZhou committed
125
126
127
128
129
130
               optimizer,
               model_path,
               logger,
               is_best=False,
               prefix='ppocr',
               **kwargs):
LDOUBLEV's avatar
LDOUBLEV committed
131
132
133
    """
    save model to the target path
    """
WenmuZhou's avatar
WenmuZhou committed
134
135
    _mkdir_if_not_exist(model_path, logger)
    model_prefix = os.path.join(model_path, prefix)
136
    paddle.save(model.state_dict(), model_prefix + '.pdparams')
WenmuZhou's avatar
WenmuZhou committed
137
    paddle.save(optimizer.state_dict(), model_prefix + '.pdopt')
WenmuZhou's avatar
WenmuZhou committed
138
139
140
141
142
143
144
145

    # save metric and config
    with open(model_prefix + '.states', 'wb') as f:
        pickle.dump(kwargs, f, protocol=2)
    if is_best:
        logger.info('save best model is to {}'.format(model_prefix))
    else:
        logger.info("save model in {}".format(model_prefix))