db_postprocess.py 5.41 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import cv2
WenmuZhou's avatar
WenmuZhou committed
21
import paddle
LDOUBLEV's avatar
LDOUBLEV committed
22
23
24
25
26
27
28
29
30
from shapely.geometry import Polygon
import pyclipper


class DBPostProcess(object):
    """
    The post process for Differentiable Binarization (DB).
    """

WenmuZhou's avatar
WenmuZhou committed
31
32
33
34
35
    def __init__(self,
                 thresh=0.3,
                 box_thresh=0.7,
                 max_candidates=1000,
                 unclip_ratio=2.0,
36
                 use_dilation=False,
WenmuZhou's avatar
WenmuZhou committed
37
38
39
40
41
                 **kwargs):
        self.thresh = thresh
        self.box_thresh = box_thresh
        self.max_candidates = max_candidates
        self.unclip_ratio = unclip_ratio
LDOUBLEV's avatar
LDOUBLEV committed
42
        self.min_size = 3
43
        self.dilation_kernel = None if not use_dilation else [[1, 1], [1, 1]]
LDOUBLEV's avatar
LDOUBLEV committed
44
45
46
47
48
49
50
51
52
53

    def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
        '''
        _bitmap: single map with shape (1, H, W),
                whose values are binarized as {0, 1}
        '''

        bitmap = _bitmap
        height, width = bitmap.shape

LDOUBLEV's avatar
LDOUBLEV committed
54
55
        outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
                                cv2.CHAIN_APPROX_SIMPLE)
tink2123's avatar
tink2123 committed
56
57
58
59
        if len(outs) == 3:
            img, contours, _ = outs[0], outs[1], outs[2]
        elif len(outs) == 2:
            contours, _ = outs[0], outs[1]
LDOUBLEV's avatar
LDOUBLEV committed
60
61
62

        num_contours = min(len(contours), self.max_candidates)

WenmuZhou's avatar
WenmuZhou committed
63
64
        boxes = []
        scores = []
LDOUBLEV's avatar
LDOUBLEV committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
        for index in range(num_contours):
            contour = contours[index]
            points, sside = self.get_mini_boxes(contour)
            if sside < self.min_size:
                continue
            points = np.array(points)
            score = self.box_score_fast(pred, points.reshape(-1, 2))
            if self.box_thresh > score:
                continue

            box = self.unclip(points).reshape(-1, 1, 2)
            box, sside = self.get_mini_boxes(box)
            if sside < self.min_size + 2:
                continue
            box = np.array(box)

            box[:, 0] = np.clip(
                np.round(box[:, 0] / width * dest_width), 0, dest_width)
            box[:, 1] = np.clip(
                np.round(box[:, 1] / height * dest_height), 0, dest_height)
WenmuZhou's avatar
WenmuZhou committed
85
86
87
            boxes.append(box.astype(np.int16))
            scores.append(score)
        return np.array(boxes, dtype=np.int16), scores
LDOUBLEV's avatar
LDOUBLEV committed
88

LDOUBLEV's avatar
LDOUBLEV committed
89
90
    def unclip(self, box):
        unclip_ratio = self.unclip_ratio
LDOUBLEV's avatar
LDOUBLEV committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
        poly = Polygon(box)
        distance = poly.area * unclip_ratio / poly.length
        offset = pyclipper.PyclipperOffset()
        offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
        expanded = np.array(offset.Execute(distance))
        return expanded

    def get_mini_boxes(self, contour):
        bounding_box = cv2.minAreaRect(contour)
        points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])

        index_1, index_2, index_3, index_4 = 0, 1, 2, 3
        if points[1][1] > points[0][1]:
            index_1 = 0
            index_4 = 1
        else:
            index_1 = 1
            index_4 = 0
        if points[3][1] > points[2][1]:
            index_2 = 2
            index_3 = 3
        else:
            index_2 = 3
            index_3 = 2

        box = [
            points[index_1], points[index_2], points[index_3], points[index_4]
        ]
        return box, min(bounding_box[1])

    def box_score_fast(self, bitmap, _box):
        h, w = bitmap.shape[:2]
        box = _box.copy()
        xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
        xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
        ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
        ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)

        mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
        box[:, 0] = box[:, 0] - xmin
        box[:, 1] = box[:, 1] - ymin
        cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
        return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]

WenmuZhou's avatar
WenmuZhou committed
135
    def __call__(self, pred, shape_list):
WenmuZhou's avatar
WenmuZhou committed
136
137
138
        if isinstance(pred, paddle.Tensor):
            pred = pred.numpy()
        pred = pred[:, 0, :, :]
LDOUBLEV's avatar
LDOUBLEV committed
139
140
141
142
        segmentation = pred > self.thresh

        boxes_batch = []
        for batch_index in range(pred.shape[0]):
LDOUBLEV's avatar
LDOUBLEV committed
143
            src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
144
145
146
147
148
149
            if self.dilation_kernel is not None:
                mask = cv2.dilate(
                    np.array(segmentation[batch_index]).astype(np.uint8),
                    self.dilation_kernel)
            else:
                mask = segmentation[batch_index]
LDOUBLEV's avatar
LDOUBLEV committed
150
            boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
LDOUBLEV's avatar
LDOUBLEV committed
151
                                                   src_w, src_h)
LDOUBLEV's avatar
LDOUBLEV committed
152

WenmuZhou's avatar
WenmuZhou committed
153
            boxes_batch.append({'points': boxes})
LDOUBLEV's avatar
LDOUBLEV committed
154
        return boxes_batch