program.py 17 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from argparse import ArgumentParser, RawDescriptionHelpFormatter
import sys
import yaml
import os
from ppocr.utils.utility import create_module
from ppocr.utils.utility import initial_logger
licx's avatar
licx committed
25

LDOUBLEV's avatar
LDOUBLEV committed
26
27
28
29
30
31
32
33
34
logger = initial_logger()

import paddle.fluid as fluid
import time
from ppocr.utils.stats import TrainingStats
from eval_utils.eval_det_utils import eval_det_run
from eval_utils.eval_rec_utils import eval_rec_run
from ppocr.utils.save_load import save_model
import numpy as np
tink2123's avatar
tink2123 committed
35
from ppocr.utils.character import cal_predicts_accuracy, cal_predicts_accuracy_srn, CharacterOps
LDOUBLEV's avatar
LDOUBLEV committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78


class ArgsParser(ArgumentParser):
    def __init__(self):
        super(ArgsParser, self).__init__(
            formatter_class=RawDescriptionHelpFormatter)
        self.add_argument("-c", "--config", help="configuration file to use")
        self.add_argument(
            "-o", "--opt", nargs='+', help="set configuration options")

    def parse_args(self, argv=None):
        args = super(ArgsParser, self).parse_args(argv)
        assert args.config is not None, \
            "Please specify --config=configure_file_path."
        args.opt = self._parse_opt(args.opt)
        return args

    def _parse_opt(self, opts):
        config = {}
        if not opts:
            return config
        for s in opts:
            s = s.strip()
            k, v = s.split('=')
            config[k] = yaml.load(v, Loader=yaml.Loader)
        return config


class AttrDict(dict):
    """Single level attribute dict, NOT recursive"""

    def __init__(self, **kwargs):
        super(AttrDict, self).__init__()
        super(AttrDict, self).update(kwargs)

    def __getattr__(self, key):
        if key in self:
            return self[key]
        raise AttributeError("object has no attribute '{}'".format(key))


global_config = AttrDict()

lyl120117's avatar
lyl120117 committed
79
80
default_config = {'Global': {'debug': False, }}

LDOUBLEV's avatar
LDOUBLEV committed
81
82
83
84
85
86
87
88

def load_config(file_path):
    """
    Load config from yml/yaml file.
    Args:
        file_path (str): Path of the config file to be loaded.
    Returns: global config
    """
lyl120117's avatar
lyl120117 committed
89
    merge_config(default_config)
LDOUBLEV's avatar
LDOUBLEV committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    _, ext = os.path.splitext(file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for now"
    merge_config(yaml.load(open(file_path), Loader=yaml.Loader))
    assert "reader_yml" in global_config['Global'],\
        "absence reader_yml in global"
    reader_file_path = global_config['Global']['reader_yml']
    _, ext = os.path.splitext(reader_file_path)
    assert ext in ['.yml', '.yaml'], "only support yaml files for reader"
    merge_config(yaml.load(open(reader_file_path), Loader=yaml.Loader))
    return global_config


def merge_config(config):
    """
    Merge config into global config.
    Args:
        config (dict): Config to be merged.
    Returns: global config
    """
    for key, value in config.items():
        if "." not in key:
            if isinstance(value, dict) and key in global_config:
                global_config[key].update(value)
            else:
                global_config[key] = value
        else:
            sub_keys = key.split('.')
tink2123's avatar
tink2123 committed
117
118
119
120
            assert (
                sub_keys[0] in global_config
            ), "the sub_keys can only be one of global_config: {}, but get: {}, please check your running command".format(
                global_config.keys(), sub_keys[0])
LDOUBLEV's avatar
LDOUBLEV committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
            cur = global_config[sub_keys[0]]
            for idx, sub_key in enumerate(sub_keys[1:]):
                assert (sub_key in cur)
                if idx == len(sub_keys) - 2:
                    cur[sub_key] = value
                else:
                    cur = cur[sub_key]


def check_gpu(use_gpu):
    """
    Log error and exit when set use_gpu=true in paddlepaddle
    cpu version.
    """
    err = "Config use_gpu cannot be set as true while you are " \
          "using paddlepaddle cpu version ! \nPlease try: \n" \
          "\t1. Install paddlepaddle-gpu to run model on GPU \n" \
          "\t2. Set use_gpu as false in config file to run " \
          "model on CPU"

    try:
        if use_gpu and not fluid.is_compiled_with_cuda():
            logger.error(err)
            sys.exit(1)
    except Exception as e:
        pass


def build(config, main_prog, startup_prog, mode):
    """
    Build a program using a model and an optimizer
        1. create feeds
        2. create a dataloader
        3. create a model
        4. create fetchs
        5. create an optimizer
    Args:
        config(dict): config
        main_prog(): main program
        startup_prog(): startup program
        is_train(bool): train or valid
    Returns:
        dataloader(): a bridge between the model and the data
        fetchs(dict): dict of model outputs(included loss and measures)
    """
    with fluid.program_guard(main_prog, startup_prog):
        with fluid.unique_name.guard():
            func_infor = config['Architecture']['function']
            model = create_module(func_infor)(params=config)
            dataloader, outputs = model(mode=mode)
            fetch_name_list = list(outputs.keys())
            fetch_varname_list = [outputs[v].name for v in fetch_name_list]
            opt_loss_name = None
tink2123's avatar
tink2123 committed
174
175
176
            model_average = None
            img_loss_name = None
            word_loss_name = None
LDOUBLEV's avatar
LDOUBLEV committed
177
178
            if mode == "train":
                opt_loss = outputs['total_loss']
tink2123's avatar
tink2123 committed
179
180
181
182
183
                # srn loss
                #img_loss = outputs['img_loss']
                #word_loss = outputs['word_loss']
                #img_loss_name = img_loss.name
                #word_loss_name = word_loss.name
LDOUBLEV's avatar
LDOUBLEV committed
184
185
186
187
188
189
190
                opt_params = config['Optimizer']
                optimizer = create_module(opt_params['function'])(opt_params)
                optimizer.minimize(opt_loss)
                opt_loss_name = opt_loss.name
                global_lr = optimizer._global_learning_rate()
                fetch_name_list.insert(0, "lr")
                fetch_varname_list.insert(0, global_lr.name)
tink2123's avatar
tink2123 committed
191
192
193
194
195
196
197
198
                if "loss_type" in config["Global"]:
                    if config['Global']["loss_type"] == 'srn':
                        model_average = fluid.optimizer.ModelAverage(
                            config['Global']['average_window'],
                            min_average_window=config['Global'][
                                'min_average_window'],
                            max_average_window=config['Global'][
                                'max_average_window'])
tink2123's avatar
tink2123 committed
199

tink2123's avatar
tink2123 committed
200
201
    return (dataloader, fetch_name_list, fetch_varname_list, opt_loss_name,
            model_average)
LDOUBLEV's avatar
LDOUBLEV committed
202
203
204
205
206
207
208
209
210
211


def build_export(config, main_prog, startup_prog):
    """
    """
    with fluid.program_guard(main_prog, startup_prog):
        with fluid.unique_name.guard():
            func_infor = config['Architecture']['function']
            model = create_module(func_infor)(params=config)
            image, outputs = model(mode='export')
212
            fetches_var_name = sorted([name for name in outputs.keys()])
dyning's avatar
dyning committed
213
            fetches_var = [outputs[name] for name in fetches_var_name]
LDOUBLEV's avatar
LDOUBLEV committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    feeded_var_names = [image.name]
    target_vars = fetches_var
    return feeded_var_names, target_vars, fetches_var_name


def create_multi_devices_program(program, loss_var_name):
    build_strategy = fluid.BuildStrategy()
    build_strategy.memory_optimize = False
    build_strategy.enable_inplace = True
    exec_strategy = fluid.ExecutionStrategy()
    exec_strategy.num_iteration_per_drop_scope = 1
    compile_program = fluid.CompiledProgram(program).with_data_parallel(
        loss_name=loss_var_name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)
    return compile_program


def train_eval_det_run(config, exe, train_info_dict, eval_info_dict):
    train_batch_id = 0
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
LDOUBLEV's avatar
LDOUBLEV committed
238
239
240
241
242
243
244
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
        logger.info(
            "During the training process, after the {}th iteration, an evaluation is run every {} iterations".
            format(start_eval_step, eval_batch_step))
LDOUBLEV's avatar
LDOUBLEV committed
245
246
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
247
248
    if not os.path.exists(save_model_dir):
        os.makedirs(save_model_dir)
LDOUBLEV's avatar
LDOUBLEV committed
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
    train_stats = TrainingStats(log_smooth_window,
                                train_info_dict['fetch_name_list'])
    best_eval_hmean = -1
    best_batch_id = 0
    best_epoch = 0
    train_loader = train_info_dict['reader']
    for epoch in range(epoch_num):
        train_loader.start()
        try:
            while True:
                t1 = time.time()
                train_outs = exe.run(
                    program=train_info_dict['compile_program'],
                    fetch_list=train_info_dict['fetch_varname_list'],
                    return_numpy=False)
                stats = {}
                for tno in range(len(train_outs)):
                    fetch_name = train_info_dict['fetch_name_list'][tno]
                    fetch_value = np.mean(np.array(train_outs[tno]))
                    stats[fetch_name] = fetch_value
                t2 = time.time()
                train_batch_elapse = t2 - t1
                train_stats.update(stats)
LDOUBLEV's avatar
LDOUBLEV committed
272
                if train_batch_id > 0 and train_batch_id  \
LDOUBLEV's avatar
LDOUBLEV committed
273
274
275
276
277
278
                    % print_batch_step == 0:
                    logs = train_stats.log()
                    strs = 'epoch: {}, iter: {}, {}, time: {:.3f}'.format(
                        epoch, train_batch_id, logs, train_batch_elapse)
                    logger.info(strs)

LDOUBLEV's avatar
LDOUBLEV committed
279
280
                if train_batch_id > start_eval_step and\
                    (train_batch_id - start_eval_step) % eval_batch_step == 0:
LDOUBLEV's avatar
LDOUBLEV committed
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
                    metrics = eval_det_run(exe, config, eval_info_dict, "eval")
                    hmean = metrics['hmean']
                    if hmean >= best_eval_hmean:
                        best_eval_hmean = hmean
                        best_batch_id = train_batch_id
                        best_epoch = epoch
                        save_path = save_model_dir + "/best_accuracy"
                        save_model(train_info_dict['train_program'], save_path)
                    strs = 'Test iter: {}, metrics:{}, best_hmean:{:.6f}, best_epoch:{}, best_batch_id:{}'.format(
                        train_batch_id, metrics, best_eval_hmean, best_epoch,
                        best_batch_id)
                    logger.info(strs)
                train_batch_id += 1

        except fluid.core.EOFException:
            train_loader.reset()
tink2123's avatar
tink2123 committed
297
        if epoch == 0 and save_epoch_step == 1:
tink2123's avatar
tink2123 committed
298
            save_path = save_model_dir + "/iter_epoch_0"
299
            save_model(train_info_dict['train_program'], save_path)
LDOUBLEV's avatar
LDOUBLEV committed
300
301
302
303
304
305
306
307
308
309
310
311
        if epoch > 0 and epoch % save_epoch_step == 0:
            save_path = save_model_dir + "/iter_epoch_%d" % (epoch)
            save_model(train_info_dict['train_program'], save_path)
    return


def train_eval_rec_run(config, exe, train_info_dict, eval_info_dict):
    train_batch_id = 0
    log_smooth_window = config['Global']['log_smooth_window']
    epoch_num = config['Global']['epoch_num']
    print_batch_step = config['Global']['print_batch_step']
    eval_batch_step = config['Global']['eval_batch_step']
LDOUBLEV's avatar
LDOUBLEV committed
312
313
314
315
316
317
318
    start_eval_step = 0
    if type(eval_batch_step) == list and len(eval_batch_step) >= 2:
        start_eval_step = eval_batch_step[0]
        eval_batch_step = eval_batch_step[1]
        logger.info(
            "During the training process, after the {}th iteration, an evaluation is run every {} iterations".
            format(start_eval_step, eval_batch_step))
LDOUBLEV's avatar
LDOUBLEV committed
319
320
    save_epoch_step = config['Global']['save_epoch_step']
    save_model_dir = config['Global']['save_model_dir']
LDOUBLEV's avatar
LDOUBLEV committed
321
    if not os.path.exists(save_model_dir):
LDOUBLEV's avatar
LDOUBLEV committed
322
        os.makedirs(save_model_dir)
LDOUBLEV's avatar
LDOUBLEV committed
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
    train_stats = TrainingStats(log_smooth_window, ['loss', 'acc'])
    best_eval_acc = -1
    best_batch_id = 0
    best_epoch = 0
    train_loader = train_info_dict['reader']
    for epoch in range(epoch_num):
        train_loader.start()
        try:
            while True:
                t1 = time.time()
                train_outs = exe.run(
                    program=train_info_dict['compile_program'],
                    fetch_list=train_info_dict['fetch_varname_list'],
                    return_numpy=False)
                fetch_map = dict(
                    zip(train_info_dict['fetch_name_list'],
                        range(len(train_outs))))

                loss = np.mean(np.array(train_outs[fetch_map['total_loss']]))
                lr = np.mean(np.array(train_outs[fetch_map['lr']]))
                preds_idx = fetch_map['decoded_out']
                preds = np.array(train_outs[preds_idx])
                labels_idx = fetch_map['label']
                labels = np.array(train_outs[labels_idx])

tink2123's avatar
tink2123 committed
348
349
350
351
352
353
354
355
356
357
358
                if config['Global']['loss_type'] != 'srn':
                    preds_lod = train_outs[preds_idx].lod()[0]
                    labels_lod = train_outs[labels_idx].lod()[0]

                    acc, acc_num, img_num = cal_predicts_accuracy(
                        config['Global']['char_ops'], preds, preds_lod, labels,
                        labels_lod)
                else:
                    acc, acc_num, img_num = cal_predicts_accuracy_srn(
                        config['Global']['char_ops'], preds, labels,
                        config['Global']['max_text_length'])
LDOUBLEV's avatar
LDOUBLEV committed
359
360
361
362
                t2 = time.time()
                train_batch_elapse = t2 - t1
                stats = {'loss': loss, 'acc': acc}
                train_stats.update(stats)
LDOUBLEV's avatar
update  
LDOUBLEV committed
363
                if train_batch_id > start_eval_step and (train_batch_id - start_eval_step) \
LDOUBLEV's avatar
LDOUBLEV committed
364
365
366
367
368
369
370
371
                    % print_batch_step == 0:
                    logs = train_stats.log()
                    strs = 'epoch: {}, iter: {}, lr: {:.6f}, {}, time: {:.3f}'.format(
                        epoch, train_batch_id, lr, logs, train_batch_elapse)
                    logger.info(strs)

                if train_batch_id > 0 and\
                    train_batch_id % eval_batch_step == 0:
tink2123's avatar
tink2123 committed
372
373
374
                    model_average = train_info_dict['model_average']
                    if model_average != None:
                        model_average.apply(exe)
LDOUBLEV's avatar
LDOUBLEV committed
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
                    metrics = eval_rec_run(exe, config, eval_info_dict, "eval")
                    eval_acc = metrics['avg_acc']
                    eval_sample_num = metrics['total_sample_num']
                    if eval_acc > best_eval_acc:
                        best_eval_acc = eval_acc
                        best_batch_id = train_batch_id
                        best_epoch = epoch
                        save_path = save_model_dir + "/best_accuracy"
                        save_model(train_info_dict['train_program'], save_path)
                    strs = 'Test iter: {}, acc:{:.6f}, best_acc:{:.6f}, best_epoch:{}, best_batch_id:{}, eval_sample_num:{}'.format(
                        train_batch_id, eval_acc, best_eval_acc, best_epoch,
                        best_batch_id, eval_sample_num)
                    logger.info(strs)
                train_batch_id += 1

        except fluid.core.EOFException:
            train_loader.reset()
tink2123's avatar
tink2123 committed
392
        if epoch == 0 and save_epoch_step == 1:
tink2123's avatar
tink2123 committed
393
            save_path = save_model_dir + "/iter_epoch_0"
394
            save_model(train_info_dict['train_program'], save_path)
LDOUBLEV's avatar
LDOUBLEV committed
395
396
397
398
        if epoch > 0 and epoch % save_epoch_step == 0:
            save_path = save_model_dir + "/iter_epoch_%d" % (epoch)
            save_model(train_info_dict['train_program'], save_path)
    return
licx's avatar
licx committed
399

tink2123's avatar
tink2123 committed
400

licx's avatar
licx committed
401
402
403
404
405
406
407
408
409
410
411
def preprocess():
    FLAGS = ArgsParser().parse_args()
    config = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    logger.info(config)

    # check if set use_gpu=True in paddlepaddle cpu version
    use_gpu = config['Global']['use_gpu']
    check_gpu(use_gpu)

    alg = config['Global']['algorithm']
412
    assert alg in ['EAST', 'DB', 'SAST', 'Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN']
tink2123's avatar
tink2123 committed
413
    if alg in ['Rosetta', 'CRNN', 'STARNet', 'RARE', 'SRN']:
licx's avatar
licx committed
414
415
416
417
418
419
420
421
422
423
424
425
        config['Global']['char_ops'] = CharacterOps(config['Global'])

    place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
    startup_program = fluid.Program()
    train_program = fluid.Program()

    if alg in ['EAST', 'DB', 'SAST']:
        train_alg_type = 'det'
    else:
        train_alg_type = 'rec'

    return startup_program, train_program, place, config, train_alg_type