rec_attention_head.py 10.3 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math

import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from .rec_seq_encoder import SequenceEncoder
import numpy as np


class AttentionPredict(object):
    def __init__(self, params):
        super(AttentionPredict, self).__init__()
        self.char_num = params['char_num']
        self.encoder = SequenceEncoder(params)
        self.decoder_size = params['Attention']['decoder_size']
        self.word_vector_dim = params['Attention']['word_vector_dim']
        self.encoder_type = params['encoder_type']
        self.max_length = params['max_text_length']

    def simple_attention(self, encoder_vec, encoder_proj, decoder_state,
                         decoder_size):
        decoder_state_proj = layers.fc(input=decoder_state,
                                       size=decoder_size,
                                       bias_attr=False,
                                       name="decoder_state_proj_fc")
        decoder_state_expand = layers.sequence_expand(
            x=decoder_state_proj, y=encoder_proj)
        concated = layers.elementwise_add(encoder_proj, decoder_state_expand)
        concated = layers.tanh(x=concated)
        attention_weights = layers.fc(input=concated,
                                      size=1,
                                      act=None,
                                      bias_attr=False,
                                      name="attention_weights_fc")
        attention_weights = layers.sequence_softmax(input=attention_weights)
        weigths_reshape = layers.reshape(x=attention_weights, shape=[-1])
        scaled = layers.elementwise_mul(
            x=encoder_vec, y=weigths_reshape, axis=0)
        context = layers.sequence_pool(input=scaled, pool_type='sum')
        return context

    def gru_decoder_with_attention(self, target_embedding, encoder_vec,
                                   encoder_proj, decoder_boot, decoder_size,
                                   char_num):
        rnn = layers.DynamicRNN()
        with rnn.block():
            current_word = rnn.step_input(target_embedding)
            encoder_vec = rnn.static_input(encoder_vec)
            encoder_proj = rnn.static_input(encoder_proj)
            hidden_mem = rnn.memory(init=decoder_boot, need_reorder=True)
            context = self.simple_attention(encoder_vec, encoder_proj,
                                            hidden_mem, decoder_size)
            fc_1 = layers.fc(input=context,
                             size=decoder_size * 3,
                             bias_attr=False,
                             name="rnn_fc1")
            fc_2 = layers.fc(input=current_word,
                             size=decoder_size * 3,
                             bias_attr=False,
                             name="rnn_fc2")
            decoder_inputs = fc_1 + fc_2
            h, _, _ = layers.gru_unit(
                input=decoder_inputs, hidden=hidden_mem, size=decoder_size * 3)
            rnn.update_memory(hidden_mem, h)
            out = layers.fc(input=h,
                            size=char_num,
                            bias_attr=True,
                            act='softmax',
                            name="rnn_out_fc")
            rnn.output(out)
        return rnn()

    def gru_attention_infer(self, decoder_boot, max_length, char_num,
                            word_vector_dim, encoded_vector, encoded_proj,
                            decoder_size):
        init_state = decoder_boot
        beam_size = 1
        array_len = layers.fill_constant(
            shape=[1], dtype='int64', value=max_length)
        counter = layers.zeros(shape=[1], dtype='int64', force_cpu=True)

        # fill the first element with init_state
        state_array = layers.create_array('float32')
        layers.array_write(init_state, array=state_array, i=counter)

        # ids, scores as memory
        ids_array = layers.create_array('int64')
        scores_array = layers.create_array('float32')
        rois_shape = layers.shape(init_state)
        batch_size = layers.slice(
            rois_shape, axes=[0], starts=[0], ends=[1]) + 1
        lod_level = layers.range(
            start=0, end=batch_size, step=1, dtype=batch_size.dtype)

        init_ids = layers.fill_constant_batch_size_like(
            input=init_state, shape=[-1, 1], value=0, dtype='int64')
        init_ids = layers.lod_reset(init_ids, lod_level)
        init_ids = layers.lod_append(init_ids, lod_level)

        init_scores = layers.fill_constant_batch_size_like(
            input=init_state, shape=[-1, 1], value=1, dtype='float32')
        init_scores = layers.lod_reset(init_scores, init_ids)
        layers.array_write(init_ids, array=ids_array, i=counter)
        layers.array_write(init_scores, array=scores_array, i=counter)

        full_ids = fluid.layers.fill_constant_batch_size_like(
            input=init_state, shape=[-1, 1], dtype='int64', value=1)

        cond = layers.less_than(x=counter, y=array_len)
        while_op = layers.While(cond=cond)
        with while_op.block():
            pre_ids = layers.array_read(array=ids_array, i=counter)
            pre_state = layers.array_read(array=state_array, i=counter)
            pre_score = layers.array_read(array=scores_array, i=counter)
            pre_ids_emb = layers.embedding(
                input=pre_ids,
                size=[char_num, word_vector_dim],
                dtype='float32')

            context = self.simple_attention(encoded_vector, encoded_proj,
                                            pre_state, decoder_size)

            # expand the recursive_sequence_lengths of pre_state 
            # to be the same with pre_score
            pre_state_expanded = layers.sequence_expand(pre_state, pre_score)
            context_expanded = layers.sequence_expand(context, pre_score)

            fc_1 = layers.fc(input=context_expanded,
                             size=decoder_size * 3,
                             bias_attr=False,
                             name="rnn_fc1")

            fc_2 = layers.fc(input=pre_ids_emb,
                             size=decoder_size * 3,
                             bias_attr=False,
                             name="rnn_fc2")

            decoder_inputs = fc_1 + fc_2
            current_state, _, _ = layers.gru_unit(
                input=decoder_inputs,
                hidden=pre_state_expanded,
                size=decoder_size * 3)
            current_state_with_lod = layers.lod_reset(
                x=current_state, y=pre_score)
            # use score to do beam search
            current_score = layers.fc(input=current_state_with_lod,
                                      size=char_num,
                                      bias_attr=True,
                                      act='softmax',
                                      name="rnn_out_fc")
            topk_scores, topk_indices = layers.topk(current_score, k=beam_size)

            new_ids = fluid.layers.concat([full_ids, topk_indices], axis=1)
            fluid.layers.assign(new_ids, full_ids)

            layers.increment(x=counter, value=1, in_place=True)

            # update the memories
            layers.array_write(current_state, array=state_array, i=counter)
            layers.array_write(topk_indices, array=ids_array, i=counter)
            layers.array_write(topk_scores, array=scores_array, i=counter)

            # update the break condition: 
            # up to the max length or all candidates of
            # source sentences have ended.
            length_cond = layers.less_than(x=counter, y=array_len)
            finish_cond = layers.logical_not(layers.is_empty(x=topk_indices))
            layers.logical_and(x=length_cond, y=finish_cond, out=cond)
        return full_ids

    def __call__(self, inputs, labels=None, mode=None):
        encoder_features = self.encoder(inputs)
        char_num = self.char_num
        word_vector_dim = self.word_vector_dim
        decoder_size = self.decoder_size

        if self.encoder_type == "reshape":
            encoder_input = encoder_features
            encoded_vector = encoder_features
        else:
            encoder_input = encoder_features[1]
            encoded_vector = layers.concat(encoder_features, axis=1)
        encoded_proj = layers.fc(input=encoded_vector,
                                 size=decoder_size,
                                 bias_attr=False,
                                 name="encoded_proj_fc")
        backward_first = layers.sequence_pool(
            input=encoder_input, pool_type='first')
        decoder_boot = layers.fc(input=backward_first,
                                 size=decoder_size,
                                 bias_attr=False,
                                 act="relu",
                                 name='decoder_boot')

        if mode == "train":
            label_in = labels['label_in']
            label_out = labels['label_out']
            label_in = layers.cast(x=label_in, dtype='int64')
            trg_embedding = layers.embedding(
                input=label_in,
                size=[char_num, word_vector_dim],
                dtype='float32')
            predict = self.gru_decoder_with_attention(
                trg_embedding, encoded_vector, encoded_proj, decoder_boot,
                decoder_size, char_num)
            _, decoded_out = layers.topk(input=predict, k=1)
            decoded_out = layers.lod_reset(decoded_out, y=label_out)
            predicts = {'predict': predict, 'decoded_out': decoded_out}
        else:
            ids = self.gru_attention_infer(
                decoder_boot, self.max_length, char_num, word_vector_dim,
                encoded_vector, encoded_proj, decoder_size)
            predicts = {'decoded_out': ids}
        return predicts