README.md 7.85 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
English | [简体中文](README_ch.md)
weishengyu's avatar
weishengyu committed
2

littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
3
4
## Style Text

littletomatodonkey's avatar
littletomatodonkey committed
5
6
7
### Contents
- [1. Introduction](#Introduction)
- [2. Preparation](#Preparation)
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
8
9
- [3. Quick Start](#Quick_Start)
- [4. Applications](#Applications)
littletomatodonkey's avatar
littletomatodonkey committed
10
- [5. Code Structure](#Code_structure)
weishengyu's avatar
weishengyu committed
11
12


littletomatodonkey's avatar
littletomatodonkey committed
13
14
<a name="Introduction"></a>
### Introduction
weishengyu's avatar
weishengyu committed
15

littletomatodonkey's avatar
littletomatodonkey committed
16
17
18
19
20
<div align="center">
    <img src="doc/images/3.png" width="800">
</div>

<div align="center">
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
21
    <img src="doc/images/9.png" width="600">
littletomatodonkey's avatar
littletomatodonkey committed
22
23
24
25
26
27
28
29
30
31
</div>


The Style-Text data synthesis tool is a tool based on Baidu's self-developed text editing algorithm "Editing Text in the Wild" [https://arxiv.org/abs/1908.03047](https://arxiv.org/abs/1908.03047).

Different from the commonly used GAN-based data synthesis tools, the main framework of Style-Text includes:
* (1) Text foreground style transfer module.
* (2) Background extraction module.
* (3) Fusion module.

littletomatodonkey's avatar
littletomatodonkey committed
32
After these three steps, you can quickly realize the image text style transfer. The following figure is some results of the data synthesis tool.
littletomatodonkey's avatar
littletomatodonkey committed
33
34

<div align="center">
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
35
    <img src="doc/images/10.png" width="1000">
littletomatodonkey's avatar
littletomatodonkey committed
36
37
38
39
</div>


<a name="Preparation"></a>
weishengyu's avatar
weishengyu committed
40
41
#### Preparation

weishengyu's avatar
weishengyu committed
42
1. Please refer the [QUICK INSTALLATION](../doc/doc_en/installation_en.md) to install PaddlePaddle. Python3 environment is strongly recommended.
weishengyu's avatar
weishengyu committed
43
44
45
2. Download the pretrained models and unzip:

```bash
littletomatodonkey's avatar
littletomatodonkey committed
46
47
cd StyleText
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/style_text/style_text_models.zip
weishengyu's avatar
weishengyu committed
48
49
50
unzip style_text_models.zip
```

littletomatodonkey's avatar
littletomatodonkey committed
51
If you save the model in another location, please modify the address of the model file in `configs/config.yml`, and you need to modify these three configurations at the same time:
weishengyu's avatar
weishengyu committed
52
53
54
55
56
57
58
59
60
61
62
63

```
bg_generator:
  pretrain: style_text_rec/bg_generator
...
text_generator:
  pretrain: style_text_models/text_generator
...
fusion_generator:
  pretrain: style_text_models/fusion_generator
```

littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
64
65
<a name="Quick_Start"></a>
### Quick Start
weishengyu's avatar
weishengyu committed
66

littletomatodonkey's avatar
littletomatodonkey committed
67
#### Synthesis single image
weishengyu's avatar
weishengyu committed
68

littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
69
1. You can run `tools/synth_image` and generate the demo image, which is saved in the current folder.
weishengyu's avatar
weishengyu committed
70

littletomatodonkey's avatar
littletomatodonkey committed
71
```python
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
72
python3 -m tools.synth_image -c configs/config.yml --style_image examples/style_images/2.jpg --text_corpus PaddleOCR --language en
weishengyu's avatar
weishengyu committed
73
74
```

75
76
77
78
* Note 1: The language options is correspond to the corpus. Currently, the tool only supports English, Simplified Chinese and Korean.
* Note 2: Synth-Text is mainly used to generate images for OCR recognition models. 
  So the height of style images should be around 32 pixels. Images in other sizes may behave poorly.

littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

For example, enter the following image and corpus `PaddleOCR`.

<div align="center">
    <img src="examples/style_images/2.jpg" width="300">
</div>

The result `fake_fusion.jpg` will be generated.

<div align="center">
    <img src="doc/images/4.jpg" width="300">
</div>

What's more, the medium result `fake_bg.jpg` will also be saved, which is the background output.

<div align="center">
    <img src="doc/images/7.jpg" width="300">
</div>


`fake_text.jpg` * `fake_text.jpg` is the generated image with the same font style as `Style Input`.
weishengyu's avatar
weishengyu committed
100
101


littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
102
103
104
<div align="center">
    <img src="doc/images/8.jpg" width="300">
</div>
weishengyu's avatar
weishengyu committed
105
106


littletomatodonkey's avatar
littletomatodonkey committed
107
#### Batch synthesis
weishengyu's avatar
weishengyu committed
108

littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
109
In actual application scenarios, it is often necessary to synthesize pictures in batches and add them to the training set. StyleText can use a batch of style pictures and corpus to synthesize data in batches. The synthesis process is as follows:
weishengyu's avatar
weishengyu committed
110
111

1. The referenced dataset can be specifed in `configs/dataset_config.yml`:
littletomatodonkey's avatar
littletomatodonkey committed
112

littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
113
114
115
116
117
118
119
120
121
   * `Global`
     * `output_dir:`:Output synthesis data path.
   * `StyleSampler`
     * `image_home`:style images' folder.
     * `label_file`:Style images' file list. If label is provided, then it is the label file path.
     * `with_label`:Whether the `label_file` is label file list.
   * `CorpusGenerator`
     * `method`:Method of CorpusGenerator,supports `FileCorpus` and `EnNumCorpus`. If `EnNumCorpus` is used,No other configuration is needed,otherwise you need to set `corpus_file` and `language`.
     * `language`:Language of the corpus.
Wei Shengyu's avatar
Wei Shengyu committed
122
     * `corpus_file`: Filepath of the corpus. Corpus file should be a text file which will be split by line-endings('\n'). Corpus generator samples one line each time.
Wei Shengyu's avatar
Wei Shengyu committed
123
124
125


Example of corpus file: 
Wei Shengyu's avatar
Wei Shengyu committed
126
127
128
```
PaddleOCR
飞桨文字识别
Wei Shengyu's avatar
Wei Shengyu committed
129
130
StyleText
风格文本图像数据合成
Wei Shengyu's avatar
Wei Shengyu committed
131
```
weishengyu's avatar
weishengyu committed
132

littletomatodonkey's avatar
littletomatodonkey committed
133
We provide a general dataset containing Chinese, English and Korean (50,000 images in all) for your trial ([download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/style_text/chkoen_5w.tar)), some examples are given below :
littletomatodonkey's avatar
littletomatodonkey committed
134
135
136
137
138

<div align="center">
     <img src="doc/images/5.png" width="800">
</div>

weishengyu's avatar
weishengyu committed
139
140
141
142
143
2. You can run the following command to start synthesis task:

   ``` bash
   python -m tools.synth_dataset.py -c configs/dataset_config.yml
   ```
weishengyu's avatar
weishengyu committed
144
We also provide example corpus and images in `examples` folder. 
weishengyu's avatar
weishengyu committed
145
146
147
148
149
150
151
152
153
154
155
    <div align="center">
        <img src="examples/style_images/1.jpg" width="300">
        <img src="examples/style_images/2.jpg" width="300">
    </div>
If you run the code above directly, you will get example output data in `output_data` folder.
You will get synthesis images and labels as below:
   <div align="center">
       <img src="doc/images/12.png" width="800">
   </div>
There will be some cache under the `label` folder. If the program exit unexpectedly, you can find cached labels there.
When the program finish normally, you will find all the labels in `label.txt` which give the final results.
littletomatodonkey's avatar
littletomatodonkey committed
156

littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
157
158
<a name="Applications"></a>
### Applications
littletomatodonkey's avatar
littletomatodonkey committed
159
160
161
We take two scenes as examples, which are metal surface English number recognition and general Korean recognition, to illustrate practical cases of using StyleText to synthesize data to improve text recognition. The following figure shows some examples of real scene images and composite images:

<div align="center">
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
162
    <img src="doc/images/11.png" width="800">
littletomatodonkey's avatar
littletomatodonkey committed
163
164
165
166
167
</div>


After adding the above synthetic data for training, the accuracy of the recognition model is improved, which is shown in the following table:

littletomatodonkey's avatar
littletomatodonkey committed
168

littletomatodonkey's avatar
littletomatodonkey committed
169
| Scenario | Characters | Raw Data | Test Data | Only Use Raw Data</br>Recognition Accuracy | New Synthetic Data | Simultaneous Use of Synthetic Data</br>Recognition Accuracy | Index Improvement |
littletomatodonkey's avatar
littletomatodonkey committed
170
171
172
| -------- | ---------- | -------- | -------- | -------------------------- | ------------ | ---------------------- | -------- |
| Metal surface | English and numbers | 2203     | 650      | 0.5938                     | 20000        | 0.7546                 | 16%      |
| Random background | Korean       | 5631     | 1230     | 0.3012                     | 100000       | 0.5057                 | 20%      |
littletomatodonkey's avatar
littletomatodonkey committed
173
174
175
176


<a name="Code_structure"></a>
### Code Structure
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
177

littletomatodonkey's avatar
littletomatodonkey committed
178
```
littletomatodonkey's avatar
littletomatodonkey committed
179
StyleText
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
180
|-- arch                        // Network module files.
littletomatodonkey's avatar
littletomatodonkey committed
181
182
183
184
185
|   |-- base_module.py
|   |-- decoder.py
|   |-- encoder.py
|   |-- spectral_norm.py
|   `-- style_text_rec.py
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
186
|-- configs                     // Config files.
littletomatodonkey's avatar
littletomatodonkey committed
187
188
|   |-- config.yml
|   `-- dataset_config.yml
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
189
190
191
192
193
194
195
196
|-- engine                      // Synthesis engines.
|   |-- corpus_generators.py    // Sample corpus from file or generate random corpus.
|   |-- predictors.py           // Predict using network.
|   |-- style_samplers.py       // Sample style images.
|   |-- synthesisers.py         // Manage other engines to synthesis images.
|   |-- text_drawers.py         // Generate standard input text images.
|   `-- writers.py              // Write synthesis images and labels into files.
|-- examples                    // Example files.
littletomatodonkey's avatar
littletomatodonkey committed
197
198
199
200
201
202
|   |-- corpus
|   |   `-- example.txt
|   |-- image_list.txt
|   `-- style_images
|       |-- 1.jpg
|       `-- 2.jpg
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
203
|-- fonts                       // Font files.
littletomatodonkey's avatar
littletomatodonkey committed
204
205
206
|   |-- ch_standard.ttf
|   |-- en_standard.ttf
|   `-- ko_standard.ttf
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
207
|-- tools                       // Program entrance.
littletomatodonkey's avatar
littletomatodonkey committed
208
|   |-- __init__.py
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
209
210
211
|   |-- synth_dataset.py        // Synthesis dataset.
|   `-- synth_image.py          // Synthesis image.
`-- utils                       // Module of basic functions.
littletomatodonkey's avatar
littletomatodonkey committed
212
213
214
215
216
217
    |-- config.py
    |-- load_params.py
    |-- logging.py
    |-- math_functions.py
    `-- sys_funcs.py
```