sensitivity_anal.py 4.98 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys

__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '..', '..', '..'))
sys.path.append(os.path.join(__dir__, '..', '..', '..', 'tools'))

import paddle
import paddle.distributed as dist
from ppocr.data import build_dataloader
from ppocr.modeling.architectures import build_model
from ppocr.losses import build_loss
from ppocr.optimizer import build_optimizer
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
from ppocr.utils.save_load import init_model
import tools.program as program

dist.get_world_size()


LDOUBLEV's avatar
LDOUBLEV committed
41
def get_pruned_params(parameters):
LDOUBLEV's avatar
LDOUBLEV committed
42
43
44
45
46
47
    params = []

    for param in parameters:
        if len(
                param.shape
        ) == 4 and 'depthwise' not in param.name and 'transpose' not in param.name and "conv2d_57" not in param.name and "conv2d_56" not in param.name:
LDOUBLEV's avatar
LDOUBLEV committed
48
            params.append(param.name)
LDOUBLEV's avatar
LDOUBLEV committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    return params


def main(config, device, logger, vdl_writer):
    # init dist environment
    if config['Global']['distributed']:
        dist.init_parallel_env()

    global_config = config['Global']

    # build dataloader
    train_dataloader = build_dataloader(config, 'Train', device, logger)
    if config['Eval']:
        valid_dataloader = build_dataloader(config, 'Eval', device, logger)
    else:
        valid_dataloader = None

    # build post process
    post_process_class = build_post_process(config['PostProcess'],
                                            global_config)

    # build model
    # for rec algorithm
    if hasattr(post_process_class, 'character'):
        char_num = len(getattr(post_process_class, 'character'))
        config['Architecture']["Head"]['out_channels'] = char_num
    model = build_model(config['Architecture'])

    flops = paddle.flops(model, [1, 3, 640, 640])
LDOUBLEV's avatar
LDOUBLEV committed
78
    logger.info(f"FLOPs before pruning: {flops}")
LDOUBLEV's avatar
LDOUBLEV committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

    from paddleslim.dygraph import FPGMFilterPruner
    model.train()
    pruner = FPGMFilterPruner(model, [1, 3, 640, 640])

    # build loss
    loss_class = build_loss(config['Loss'])

    # build optim
    optimizer, lr_scheduler = build_optimizer(
        config['Optimizer'],
        epochs=config['Global']['epoch_num'],
        step_each_epoch=len(train_dataloader),
        parameters=model.parameters())

    # build metric
    eval_class = build_metric(config['Metric'])
    # load pretrain model
    pre_best_model_dict = init_model(config, model, logger, optimizer)

LDOUBLEV's avatar
LDOUBLEV committed
99
100
101
102
103
    logger.info('train dataloader has {} iters, valid dataloader has {} iters'.
                format(len(train_dataloader), len(valid_dataloader)))
    # build metric
    eval_class = build_metric(config['Metric'])

LDOUBLEV's avatar
LDOUBLEV committed
104
105
106
107
108
109
110
111
112
    logger.info('train dataloader has {} iters, valid dataloader has {} iters'.
                format(len(train_dataloader), len(valid_dataloader)))

    def eval_fn():
        metric = program.eval(model, valid_dataloader, post_process_class,
                              eval_class)
        logger.info(f"metric['hmean']: {metric['hmean']}")
        return metric['hmean']

LDOUBLEV's avatar
LDOUBLEV committed
113
    params_sensitive = pruner.sensitive(
LDOUBLEV's avatar
LDOUBLEV committed
114
115
116
117
118
119
        eval_func=eval_fn,
        sen_file="./sen.pickle",
        skip_vars=[
            "conv2d_57.w_0", "conv2d_transpose_2.w_0", "conv2d_transpose_3.w_0"
        ])

LDOUBLEV's avatar
LDOUBLEV committed
120
121
122
123
124
125
126
    logger.info(
        "The sensitivity analysis results of model parameters saved in sen.pickle"
    )
    # calculate pruned params's ratio
    params_sensitive = pruner._get_ratios_by_loss(params_sensitive, loss=0.02)
    for key in params_sensitive.keys():
        logger.info(f"{key}, {params_sensitive[key]}")
LDOUBLEV's avatar
LDOUBLEV committed
127

LDOUBLEV's avatar
LDOUBLEV committed
128
    plan = pruner.prune_vars(params_sensitive, [0])
LDOUBLEV's avatar
LDOUBLEV committed
129
130
131
    for param in model.parameters():
        if ("weights" in param.name and "conv" in param.name) or (
                "w_0" in param.name and "conv2d" in param.name):
LDOUBLEV's avatar
LDOUBLEV committed
132
            logger.info(f"{param.name}: {param.shape}")
LDOUBLEV's avatar
LDOUBLEV committed
133
134

    flops = paddle.flops(model, [1, 3, 640, 640])
LDOUBLEV's avatar
LDOUBLEV committed
135
    logger.info(f"FLOPs after pruning: {flops}")
LDOUBLEV's avatar
LDOUBLEV committed
136
137

    # start train
LDOUBLEV's avatar
LDOUBLEV committed
138

LDOUBLEV's avatar
LDOUBLEV committed
139
140
141
142
143
144
145
146
    program.train(config, train_dataloader, valid_dataloader, device, model,
                  loss_class, optimizer, lr_scheduler, post_process_class,
                  eval_class, pre_best_model_dict, logger, vdl_writer)


if __name__ == '__main__':
    config, device, logger, vdl_writer = program.preprocess(is_train=True)
    main(config, device, logger, vdl_writer)