train.py 4.19 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
WenmuZhou's avatar
WenmuZhou committed
21

22
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
23
sys.path.append(__dir__)
24
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
LDOUBLEV's avatar
LDOUBLEV committed
25

WenmuZhou's avatar
WenmuZhou committed
26
27
28
import yaml
import paddle
import paddle.distributed as dist
LDOUBLEV's avatar
LDOUBLEV committed
29

dyning's avatar
dyning committed
30
paddle.seed(2)
LDOUBLEV's avatar
LDOUBLEV committed
31

WenmuZhou's avatar
WenmuZhou committed
32
from ppocr.data import build_dataloader
dyning's avatar
dyning committed
33
34
from ppocr.modeling.architectures import build_model
from ppocr.losses import build_loss
WenmuZhou's avatar
WenmuZhou committed
35
36
37
38
39
from ppocr.optimizer import build_optimizer
from ppocr.postprocess import build_post_process
from ppocr.metrics import build_metric
from ppocr.utils.save_load import init_model
import tools.program as program
LDOUBLEV's avatar
LDOUBLEV committed
40

WenmuZhou's avatar
WenmuZhou committed
41
dist.get_world_size()
LDOUBLEV's avatar
LDOUBLEV committed
42
43


WenmuZhou's avatar
WenmuZhou committed
44
45
46
47
def main(config, device, logger, vdl_writer):
    # init dist environment
    if config['Global']['distributed']:
        dist.init_parallel_env()
LDOUBLEV's avatar
LDOUBLEV committed
48

WenmuZhou's avatar
WenmuZhou committed
49
    global_config = config['Global']
dyning's avatar
dyning committed
50

WenmuZhou's avatar
WenmuZhou committed
51
    # build dataloader
dyning's avatar
dyning committed
52
    train_dataloader = build_dataloader(config, 'Train', device, logger)
WenmuZhou's avatar
WenmuZhou committed
53
54
    if len(train_dataloader) == 0:
        logger.error(
55
56
57
58
            "No Images in train dataset, please ensure\n" +
            "\t1. The images num in the train label_file_list should be larger than or equal with batch size.\n"
            +
            "\t2. The annotation file and path in the configuration file are provided normally."
WenmuZhou's avatar
WenmuZhou committed
59
        )
WenmuZhou's avatar
WenmuZhou committed
60
        return
WenmuZhou's avatar
WenmuZhou committed
61

dyning's avatar
dyning committed
62
    if config['Eval']:
dyning's avatar
dyning committed
63
        valid_dataloader = build_dataloader(config, 'Eval', device, logger)
WenmuZhou's avatar
WenmuZhou committed
64
    else:
dyning's avatar
dyning committed
65
66
        valid_dataloader = None

WenmuZhou's avatar
WenmuZhou committed
67
    # build post process
dyning's avatar
dyning committed
68
69
70
    post_process_class = build_post_process(config['PostProcess'],
                                            global_config)

WenmuZhou's avatar
WenmuZhou committed
71
    # build model
WenmuZhou's avatar
WenmuZhou committed
72
    # for rec algorithm
WenmuZhou's avatar
WenmuZhou committed
73
    if hasattr(post_process_class, 'character'):
dyning's avatar
dyning committed
74
75
        char_num = len(getattr(post_process_class, 'character'))
        config['Architecture']["Head"]['out_channels'] = char_num
WenmuZhou's avatar
WenmuZhou committed
76
77
78
79
    model = build_model(config['Architecture'])
    if config['Global']['distributed']:
        model = paddle.DataParallel(model)

dyning's avatar
dyning committed
80
81
    # build loss
    loss_class = build_loss(config['Loss'])
dyning's avatar
dyning committed
82

WenmuZhou's avatar
WenmuZhou committed
83
    # build optim
dyning's avatar
dyning committed
84
85
    optimizer, lr_scheduler = build_optimizer(
        config['Optimizer'],
WenmuZhou's avatar
WenmuZhou committed
86
        epochs=config['Global']['epoch_num'],
dyning's avatar
dyning committed
87
        step_each_epoch=len(train_dataloader),
WenmuZhou's avatar
WenmuZhou committed
88
89
90
91
        parameters=model.parameters())

    # build metric
    eval_class = build_metric(config['Metric'])
dyning's avatar
dyning committed
92
93
    # load pretrain model
    pre_best_model_dict = init_model(config, model, logger, optimizer)
WenmuZhou's avatar
WenmuZhou committed
94

95
96
97
98
    logger.info('train dataloader has {} iters'.format(len(train_dataloader)))
    if valid_dataloader is not None:
        logger.info('valid dataloader has {} iters'.format(
            len(valid_dataloader)))
WenmuZhou's avatar
WenmuZhou committed
99
    # start train
dyning's avatar
dyning committed
100
101
102
    program.train(config, train_dataloader, valid_dataloader, device, model,
                  loss_class, optimizer, lr_scheduler, post_process_class,
                  eval_class, pre_best_model_dict, logger, vdl_writer)
dyning's avatar
dyning committed
103
104
105


def test_reader(config, device, logger):
WenmuZhou's avatar
WenmuZhou committed
106
    loader = build_dataloader(config, 'Train', device, logger)
107
108
109
110
    import time
    starttime = time.time()
    count = 0
    try:
dyning's avatar
dyning committed
111
        for data in loader():
112
113
114
115
            count += 1
            if count % 1 == 0:
                batch_time = time.time() - starttime
                starttime = time.time()
WenmuZhou's avatar
WenmuZhou committed
116
117
                logger.info("reader: {}, {}, {}".format(
                    count, len(data[0]), batch_time))
118
    except Exception as e:
LDOUBLEV's avatar
LDOUBLEV committed
119
120
        logger.info(e)
    logger.info("finish reader: {}, Success!".format(count))
121

dyning's avatar
dyning committed
122

LDOUBLEV's avatar
LDOUBLEV committed
123
if __name__ == '__main__':
124
    config, device, logger, vdl_writer = program.preprocess(is_train=True)
dyning's avatar
dyning committed
125
    main(config, device, logger, vdl_writer)
WenmuZhou's avatar
WenmuZhou committed
126
    # test_reader(config, device, logger)