predict_det.py 7.74 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
import os
import sys
16
__dir__ = os.path.dirname(os.path.abspath(__file__))
LDOUBLEV's avatar
LDOUBLEV committed
17
sys.path.append(__dir__)
18
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
19

LDOUBLEV's avatar
LDOUBLEV committed
20
import tools.infer.utility as utility
LDOUBLEV's avatar
LDOUBLEV committed
21
22
from ppocr.utils.utility import initial_logger
logger = initial_logger()
LDOUBLEV's avatar
LDOUBLEV committed
23
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
LDOUBLEV's avatar
LDOUBLEV committed
24
import cv2
licx's avatar
licx committed
25
from ppocr.data.det.sast_process import SASTProcessTest
LDOUBLEV's avatar
LDOUBLEV committed
26
27
28
29
from ppocr.data.det.east_process import EASTProcessTest
from ppocr.data.det.db_process import DBProcessTest
from ppocr.postprocess.db_postprocess import DBPostProcess
from ppocr.postprocess.east_postprocess import EASTPostPocess
licx's avatar
licx committed
30
from ppocr.postprocess.sast_postprocess import SASTPostProcess
LDOUBLEV's avatar
LDOUBLEV committed
31
32
33
34
import copy
import numpy as np
import math
import time
35
import sys
LDOUBLEV's avatar
LDOUBLEV committed
36
37
38
39
40
41
42
43
44
45
46
47
48


class TextDetector(object):
    def __init__(self, args):
        max_side_len = args.det_max_side_len
        self.det_algorithm = args.det_algorithm
        preprocess_params = {'max_side_len': max_side_len}
        postprocess_params = {}
        if self.det_algorithm == "DB":
            self.preprocess_op = DBProcessTest(preprocess_params)
            postprocess_params["thresh"] = args.det_db_thresh
            postprocess_params["box_thresh"] = args.det_db_box_thresh
            postprocess_params["max_candidates"] = 1000
49
            postprocess_params["unclip_ratio"] = args.det_db_unclip_ratio
LDOUBLEV's avatar
LDOUBLEV committed
50
51
52
53
54
55
56
            self.postprocess_op = DBPostProcess(postprocess_params)
        elif self.det_algorithm == "EAST":
            self.preprocess_op = EASTProcessTest(preprocess_params)
            postprocess_params["score_thresh"] = args.det_east_score_thresh
            postprocess_params["cover_thresh"] = args.det_east_cover_thresh
            postprocess_params["nms_thresh"] = args.det_east_nms_thresh
            self.postprocess_op = EASTPostPocess(postprocess_params)
licx's avatar
licx committed
57
58
59
60
        elif self.det_algorithm == "SAST":
            self.preprocess_op = SASTProcessTest(preprocess_params)
            postprocess_params["score_thresh"] = args.det_sast_score_thresh
            postprocess_params["nms_thresh"] = args.det_sast_nms_thresh
61
62
            self.det_sast_polygon = args.det_sast_polygon
            if self.det_sast_polygon:
63
64
65
66
67
68
69
                postprocess_params["sample_pts_num"] = 6
                postprocess_params["expand_scale"] = 1.2
                postprocess_params["shrink_ratio_of_width"] = 0.2
            else:
                postprocess_params["sample_pts_num"] = 2
                postprocess_params["expand_scale"] = 1.0
                postprocess_params["shrink_ratio_of_width"] = 0.3
licx's avatar
licx committed
70
            self.postprocess_op = SASTPostProcess(postprocess_params)
LDOUBLEV's avatar
LDOUBLEV committed
71
72
73
74
75
76
77
78
        else:
            logger.info("unknown det_algorithm:{}".format(self.det_algorithm))
            sys.exit(0)

        self.predictor, self.input_tensor, self.output_tensors =\
            utility.create_predictor(args, mode="det")

    def order_points_clockwise(self, pts):
79
80
        """
        reference from: https://github.com/jrosebr1/imutils/blob/master/imutils/perspective.py
LDOUBLEV's avatar
LDOUBLEV committed
81
        # sort the points based on their x-coordinates
82
        """
LDOUBLEV's avatar
LDOUBLEV committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
        xSorted = pts[np.argsort(pts[:, 0]), :]

        # grab the left-most and right-most points from the sorted
        # x-roodinate points
        leftMost = xSorted[:2, :]
        rightMost = xSorted[2:, :]

        # now, sort the left-most coordinates according to their
        # y-coordinates so we can grab the top-left and bottom-left
        # points, respectively
        leftMost = leftMost[np.argsort(leftMost[:, 1]), :]
        (tl, bl) = leftMost

        rightMost = rightMost[np.argsort(rightMost[:, 1]), :]
        (tr, br) = rightMost

        rect = np.array([tl, tr, br, bl], dtype="float32")
        return rect

dyning's avatar
dyning committed
102
    def clip_det_res(self, points, img_height, img_width):
103
        for pno in range(points.shape[0]):
dyning's avatar
dyning committed
104
105
            points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
            points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
LDOUBLEV's avatar
LDOUBLEV committed
106
107
108
109
110
111
112
        return points

    def filter_tag_det_res(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.order_points_clockwise(box)
dyning's avatar
dyning committed
113
            box = self.clip_det_res(box, img_height, img_width)
LDOUBLEV's avatar
LDOUBLEV committed
114
115
116
117
118
119
120
121
            rect_width = int(np.linalg.norm(box[0] - box[1]))
            rect_height = int(np.linalg.norm(box[0] - box[3]))
            if rect_width <= 10 or rect_height <= 10:
                continue
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes

122
123
124
125
126
127
128
129
130
    def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
        img_height, img_width = image_shape[0:2]
        dt_boxes_new = []
        for box in dt_boxes:
            box = self.clip_det_res(box, img_height, img_width)
            dt_boxes_new.append(box)
        dt_boxes = np.array(dt_boxes_new)
        return dt_boxes
    
LDOUBLEV's avatar
LDOUBLEV committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
    def __call__(self, img):
        ori_im = img.copy()
        im, ratio_list = self.preprocess_op(img)
        if im is None:
            return None, 0
        im = im.copy()
        starttime = time.time()
        self.input_tensor.copy_from_cpu(im)
        self.predictor.zero_copy_run()
        outputs = []
        for output_tensor in self.output_tensors:
            output = output_tensor.copy_to_cpu()
            outputs.append(output)
        outs_dict = {}
        if self.det_algorithm == "EAST":
LDOUBLEV's avatar
LDOUBLEV committed
146
147
            outs_dict['f_geo'] = outputs[0]
            outs_dict['f_score'] = outputs[1]
licx's avatar
licx committed
148
149
150
151
152
        elif self.det_algorithm == 'SAST':
            outs_dict['f_border'] = outputs[0]
            outs_dict['f_score'] = outputs[1]
            outs_dict['f_tco'] = outputs[2]
            outs_dict['f_tvo'] = outputs[3]
LDOUBLEV's avatar
LDOUBLEV committed
153
        else:
154
            outs_dict['maps'] = outputs[0]
licx's avatar
licx committed
155
                
LDOUBLEV's avatar
LDOUBLEV committed
156
157
        dt_boxes_list = self.postprocess_op(outs_dict, [ratio_list])
        dt_boxes = dt_boxes_list[0]
158
159
160
161
        if self.det_algorithm == "SAST" and self.det_sast_polygon:
            dt_boxes = self.filter_tag_det_res_only_clip(dt_boxes, ori_im.shape)
        else:
            dt_boxes = self.filter_tag_det_res(dt_boxes, ori_im.shape)
LDOUBLEV's avatar
LDOUBLEV committed
162
163
164
165
166
167
        elapse = time.time() - starttime
        return dt_boxes, elapse


if __name__ == "__main__":
    args = utility.parse_args()
LDOUBLEV's avatar
LDOUBLEV committed
168
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
169
170
171
    text_detector = TextDetector(args)
    count = 0
    total_time = 0
littletomatodonkey's avatar
littletomatodonkey committed
172
173
174
    draw_img_save = "./inference_results"
    if not os.path.exists(draw_img_save):
        os.makedirs(draw_img_save)
LDOUBLEV's avatar
LDOUBLEV committed
175
    for image_file in image_file_list:
LDOUBLEV's avatar
LDOUBLEV committed
176
177
178
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
LDOUBLEV's avatar
LDOUBLEV committed
179
180
181
182
183
184
185
186
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        dt_boxes, elapse = text_detector(img)
        if count > 0:
            total_time += elapse
        count += 1
        print("Predict time of %s:" % image_file, elapse)
dyning's avatar
dyning committed
187
188
        src_im = utility.draw_text_det_res(dt_boxes, image_file)
        img_name_pure = image_file.split("/")[-1]
littletomatodonkey's avatar
littletomatodonkey committed
189
190
        cv2.imwrite(
            os.path.join(draw_img_save, "det_res_%s" % img_name_pure), src_im)
191
192
    if count > 1:
        print("Avg Time:", total_time / (count - 1))