det_mv3_db.yml 1.24 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
Global:
  algorithm: DB
  use_gpu: true
  epoch_num: 1200
  log_smooth_window: 20
  print_batch_step: 2
7
  save_model_dir: ./output/det_db/
LDOUBLEV's avatar
LDOUBLEV committed
8
  save_epoch_step: 200
LDOUBLEV's avatar
LDOUBLEV committed
9
10
  # evaluation is run every 2000 iterations after the 5000th iteration
  eval_batch_step: [5000, 5000]
LDOUBLEV's avatar
LDOUBLEV committed
11
12
13
14
  train_batch_size_per_card: 16
  test_batch_size_per_card: 16
  image_shape: [3, 640, 640]
  reader_yml: ./configs/det/det_db_icdar15_reader.yml
LDOUBLEV's avatar
LDOUBLEV committed
15
  pretrain_weights: ./pretrain_models/MobileNetV3_large_x0_5_pretrained/
16
  checkpoints:
17
  save_res_path: ./output/det_db/predicts_db.txt
18
  save_inference_dir:
LDOUBLEV's avatar
LDOUBLEV committed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
  
Architecture:
  function: ppocr.modeling.architectures.det_model,DetModel

Backbone:
  function: ppocr.modeling.backbones.det_mobilenet_v3,MobileNetV3
  scale: 0.5
  model_name: large

Head:
  function: ppocr.modeling.heads.det_db_head,DBHead
  model_name: large
  k: 50
  inner_channels: 96
  out_channels: 2

Loss:
  function: ppocr.modeling.losses.det_db_loss,DBLoss
  balance_loss: true
  main_loss_type: DiceLoss
  alpha: 5
  beta: 10
  ohem_ratio: 3

Optimizer:
  function: ppocr.optimizer,AdamDecay
  base_lr: 0.001
  beta1: 0.9
  beta2: 0.999

PostProcess:
  function: ppocr.postprocess.db_postprocess,DBPostProcess
  thresh: 0.3
  box_thresh: 0.7
  max_candidates: 1000
LDOUBLEV's avatar
LDOUBLEV committed
54
  unclip_ratio: 2.0