module.py 5.78 KB
Newer Older
dyning's avatar
dyning committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# -*- coding:utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import ast
import copy
import math
import os
import time

from paddle.fluid.core import AnalysisConfig, create_paddle_predictor, PaddleTensor
from paddlehub.common.logger import logger
from paddlehub.module.module import moduleinfo, runnable, serving
from PIL import Image
import cv2
import numpy as np
import paddle.fluid as fluid
import paddlehub as hub

from tools.infer.utility import draw_ocr, base64_to_cv2
from tools.infer.predict_system import TextSystem


@moduleinfo(
    name="ocr_system",
    version="1.0.0",
    summary="ocr system service",
    author="paddle-dev",
    author_email="paddle-dev@baidu.com",
    type="cv/text_recognition")
class OCRSystem(hub.Module):
dyning's avatar
dyning committed
34
    def _initialize(self, use_gpu=False):
dyning's avatar
dyning committed
35
36
37
        """
        initialize with the necessary elements
        """
dyning's avatar
dyning committed
38
39
40
41
        from ocr_system.params import read_params
        cfg = read_params()

        cfg.use_gpu = use_gpu
dyning's avatar
dyning committed
42
43
44
45
46
47
        if use_gpu:
            try:
                _places = os.environ["CUDA_VISIBLE_DEVICES"]
                int(_places[0])
                print("use gpu: ", use_gpu)
                print("CUDA_VISIBLE_DEVICES: ", _places)
dyning's avatar
dyning committed
48
                cfg.gpu_mem = 8000
dyning's avatar
dyning committed
49
50
51
52
            except:
                raise RuntimeError(
                    "Environment Variable CUDA_VISIBLE_DEVICES is not set correctly. If you wanna use gpu, please set CUDA_VISIBLE_DEVICES via export CUDA_VISIBLE_DEVICES=cuda_device_id."
                )
dyning's avatar
dyning committed
53
54
55
        cfg.ir_optim = True

        self.text_sys = TextSystem(cfg)
dyning's avatar
dyning committed
56
57
58
59
60
61
62
63
64
65
66
67
68

    def read_images(self, paths=[]):
        images = []
        for img_path in paths:
            assert os.path.isfile(
                img_path), "The {} isn't a valid file.".format(img_path)
            img = cv2.imread(img_path)
            if img is None:
                logger.info("error in loading image:{}".format(img_path))
                continue
            images.append(img)
        return images

dyning's avatar
dyning committed
69
    def predict(self,
dyning's avatar
dyning committed
70
71
72
73
74
75
76
77
78
79
                       images=[],
                       paths=[],
                       draw_img_save='ocr_result',
                       visualization=False,
                       text_thresh=0.5):
        """
        Get the chinese texts in the predicted images.
        Args:
            images (list(numpy.ndarray)): images data, shape of each is [H, W, C]. If images not paths
            paths (list[str]): The paths of images. If paths not images
dyning's avatar
dyning committed
80
            draw_img_save (str): The directory to store output images.
dyning's avatar
dyning committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
            visualization (bool): Whether to save image or not.
            text_thresh(float): the threshold of the recognize chinese texts' confidence
        Returns:
            res (list): The result of chinese texts and save path of images.
        """

        if images != [] and isinstance(images, list) and paths == []:
            predicted_data = images
        elif images == [] and isinstance(paths, list) and paths != []:
            predicted_data = self.read_images(paths)
        else:
            raise TypeError("The input data is inconsistent with expectations.")

        assert predicted_data != [], "There is not any image to be predicted. Please check the input data."

        cnt = 0
        all_results = []
        for img in predicted_data:
            result = {'save_path': ''}
            if img is None:
                logger.info("error in loading image")
                result['data'] = []
                all_results.append(result)
                continue
            starttime = time.time()
dyning's avatar
dyning committed
106
            dt_boxes, rec_res = self.text_sys(img)
dyning's avatar
dyning committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
            elapse = time.time() - starttime
            cnt += 1
            print("Predict time of image %d: %.3fs" % (cnt, elapse))
            dt_num = len(dt_boxes)
            rec_res_final = []
            for dno in range(dt_num):
                text, score = rec_res[dno]
                # if the recognized text confidence score is lower than text_thresh, then drop it
                if score >= text_thresh:
                    # text_str = "%s, %.3f" % (text, score)
                    # print(text_str)
                    rec_res_final.append(
                        {
                            'text': text,
                            'confidence': float(score),
                            'text_box_position': dt_boxes[dno].astype(np.int).tolist()
                        }
                    )
            result['data'] = rec_res_final

            if visualization:
                image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
                boxes = dt_boxes
                txts = [rec_res[i][0] for i in range(len(rec_res))]
                scores = [rec_res[i][1] for i in range(len(rec_res))]

                draw_img = draw_ocr(image, boxes, txts, scores, draw_txt=True, drop_score=0.5)
                if not os.path.exists(draw_img_save):
                    os.makedirs(draw_img_save)
                saved_name = 'ndarray_{}.jpg'.format(time.time())
                save_file_path = os.path.join(draw_img_save, saved_name)
                cv2.imwrite(save_file_path, draw_img[:, :, ::-1])
                print("The visualized image saved in {}".format(save_file_path))
                result['save_path'] = save_file_path

            all_results.append(result)
        return all_results

    @serving
    def serving_method(self, images, **kwargs):
        """
        Run as a service.
        """
        images_decode = [base64_to_cv2(image) for image in images]
dyning's avatar
dyning committed
151
        results = self.predict(images_decode, **kwargs)
dyning's avatar
dyning committed
152
153
154
155
156
157
158
159
160
        return results

   
if __name__ == '__main__':
    ocr = OCRSystem()
    image_path = [
        './doc/imgs/11.jpg',
        './doc/imgs/12.jpg',
    ]
dyning's avatar
dyning committed
161
    res = ocr.predict(paths=image_path, visualization=False)
dyning's avatar
dyning committed
162
    print(res)