export_center.py 2.59 KB
Newer Older
Bin Lu's avatar
Bin Lu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import pickle

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))

from ppocr.data import build_dataloader
from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
30
from ppocr.utils.save_load import load_model
Bin Lu's avatar
Bin Lu committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from ppocr.utils.utility import print_dict
import tools.program as program


def main():
    global_config = config['Global']
    # build dataloader
    config['Eval']['dataset']['name'] = config['Train']['dataset']['name']
    config['Eval']['dataset']['data_dir'] = config['Train']['dataset'][
        'data_dir']
    config['Eval']['dataset']['label_file_list'] = config['Train']['dataset'][
        'label_file_list']
    eval_dataloader = build_dataloader(config, 'Eval', device, logger)

    # build post process
    post_process_class = build_post_process(config['PostProcess'],
                                            global_config)

    # build model
    # for rec algorithm
    if hasattr(post_process_class, 'character'):
        char_num = len(getattr(post_process_class, 'character'))
        config['Architecture']["Head"]['out_channels'] = char_num

    #set return_features = True
    config['Architecture']["Head"]["return_feats"] = True

    model = build_model(config['Architecture'])

60
    best_model_dict = load_model(config, model)
Bin Lu's avatar
Bin Lu committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    if len(best_model_dict):
        logger.info('metric in ckpt ***************')
        for k, v in best_model_dict.items():
            logger.info('{}:{}'.format(k, v))

    # get features from train data
    char_center = program.get_center(model, eval_dataloader, post_process_class)

    #serialize to disk
    with open("train_center.pkl", 'wb') as f:
        pickle.dump(char_center, f)
    return


if __name__ == '__main__':
    config, device, logger, vdl_writer = program.preprocess()
    main()