detection_en.md 14.4 KB
Newer Older
1
# Text Detection
LDOUBLEV's avatar
LDOUBLEV committed
2

3
This section uses the icdar2015 dataset as an example to introduce the training, evaluation, and testing of the detection model in PaddleOCR.
LDOUBLEV's avatar
LDOUBLEV committed
4

5
6
- [1. Data and Weights Preparation](#1-data-and-weights-preparatio)
  * [1.1 Data Preparation](#11-data-preparation)
fanruinet's avatar
fanruinet committed
7
  * [1.2 Download Pre-trained Model](#12-download-pretrained-model)
8
9
10
11
- [2. Training](#2-training)
  * [2.1 Start Training](#21-start-training)
  * [2.2 Load Trained Model and Continue Training](#22-load-trained-model-and-continue-training)
  * [2.3 Training with New Backbone](#23-training-with-new-backbone)
12
  * [2.4 Training with knowledge distillation](#24)
13
14
15
16
17
- [3. Evaluation and Test](#3-evaluation-and-test)
  * [3.1 Evaluation](#31-evaluation)
  * [3.2 Test](#32-test)
- [4. Inference](#4-inference)
- [5. FAQ](#2-faq)
Khanh Tran's avatar
Khanh Tran committed
18

19
## 1. Data and Weights Preparation
Khanh Tran's avatar
Khanh Tran committed
20

21
### 1.1 Data Preparation
LDOUBLEV's avatar
LDOUBLEV committed
22
23

The icdar2015 dataset contains train set which has 1000 images obtained with wearable cameras and test set which has 500 images obtained with wearable cameras. The icdar2015 can be obtained from [official website](https://rrc.cvc.uab.es/?ch=4&com=downloads). Registration is required for downloading.
Khanh Tran's avatar
Khanh Tran committed
24

LDOUBLEV's avatar
LDOUBLEV committed
25
26
27
28

After registering and logging in, download the part marked in the red box in the figure below. And, the content downloaded by `Training Set Images` should be saved as the folder `icdar_c4_train_imgs`, and the content downloaded by `Test Set Images` is saved as the folder `ch4_test_images`

<p align="center">
LDOUBLEV's avatar
LDOUBLEV committed
29
 <img src="../datasets/ic15_location_download.png" align="middle" width = "700"/>
LDOUBLEV's avatar
LDOUBLEV committed
30
31
<p align="center">

Khanh Tran's avatar
Khanh Tran committed
32
Decompress the downloaded dataset to the working directory, assuming it is decompressed under PaddleOCR/train_data/. In addition, PaddleOCR organizes many scattered annotation files into two separate annotation files for train and test respectively, which can be downloaded by wget:
licx's avatar
licx committed
33
```shell
Khanh Tran's avatar
Khanh Tran committed
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# Under the PaddleOCR path
cd PaddleOCR/
wget -P ./train_data/  https://paddleocr.bj.bcebos.com/dataset/train_icdar2015_label.txt
wget -P ./train_data/  https://paddleocr.bj.bcebos.com/dataset/test_icdar2015_label.txt
```

After decompressing the data set and downloading the annotation file, PaddleOCR/train_data/ has two folders and two files, which are:
```
/PaddleOCR/train_data/icdar2015/text_localization/
  └─ icdar_c4_train_imgs/         Training data of icdar dataset
  └─ ch4_test_images/             Testing data of icdar dataset
  └─ train_icdar2015_label.txt    Training annotation of icdar dataset
  └─ test_icdar2015_label.txt     Test annotation of icdar dataset
```

fanruinet's avatar
fanruinet committed
49
The provided annotation file format is as follow, separated by "\t":
Khanh Tran's avatar
Khanh Tran committed
50
51
```
" Image file name             Image annotation information encoded by json.dumps"
LDOUBLEV's avatar
LDOUBLEV committed
52
ch4_test_images/img_61.jpg    [{"transcription": "MASA", "points": [[310, 104], [416, 141], [418, 216], [312, 179]]}, {...}]
Khanh Tran's avatar
Khanh Tran committed
53
```
WenmuZhou's avatar
WenmuZhou committed
54
The image annotation after **json.dumps()** encoding is a list containing multiple dictionaries.
Khanh Tran's avatar
Khanh Tran committed
55

licx's avatar
licx committed
56
57
58
59
60
The `points` in the dictionary represent the coordinates (x, y) of the four points of the text box, arranged clockwise from the point at the upper left corner.

`transcription` represents the text of the current text box. **When its content is "###" it means that the text box is invalid and will be skipped during training.**

If you want to train PaddleOCR on other datasets, please build the annotation file according to the above format.
Khanh Tran's avatar
Khanh Tran committed
61
62


fanruinet's avatar
fanruinet committed
63
### 1.2 Download Pre-trained Model
64

fanruinet's avatar
fanruinet committed
65
66
First download the pre-trained model. The detection model of PaddleOCR currently supports 3 backbones, namely MobileNetV3, ResNet18_vd and ResNet50_vd. You can use the model in [PaddleClas](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.0/ppcls/modeling/architectures) to replace backbone according to your needs.
And the responding download link of backbone pre-trained weights can be found in (https://github.com/PaddlePaddle/PaddleClas/blob/release%2F2.0/README_cn.md#resnet%E5%8F%8A%E5%85%B6vd%E7%B3%BB%E5%88%97).
Khanh Tran's avatar
Khanh Tran committed
67

licx's avatar
licx committed
68
```shell
Khanh Tran's avatar
Khanh Tran committed
69
70
cd PaddleOCR/
# Download the pre-trained model of MobileNetV3
tink2123's avatar
tink2123 committed
71
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/MobileNetV3_large_x0_5_pretrained.pdparams
WenmuZhou's avatar
WenmuZhou committed
72
# or, download the pre-trained model of ResNet18_vd
tink2123's avatar
tink2123 committed
73
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/ResNet18_vd_pretrained.pdparams
WenmuZhou's avatar
WenmuZhou committed
74
# or, download the pre-trained model of ResNet50_vd
tink2123's avatar
tink2123 committed
75
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/ResNet50_vd_ssld_pretrained.pdparams
76

77
```
Khanh Tran's avatar
Khanh Tran committed
78

Leif's avatar
Leif committed
79
## 2. Training
80
81
82

### 2.1 Start Training

MissPenguin's avatar
MissPenguin committed
83
*If CPU version installed, please set the parameter `use_gpu` to `false` in the configuration.*
licx's avatar
licx committed
84
```shell
85
python3 tools/train.py -c configs/det/det_mv3_db.yml  \
Leif's avatar
Leif committed
86
         -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
Khanh Tran's avatar
Khanh Tran committed
87
88
```

MissPenguin's avatar
MissPenguin committed
89
90
In the above instruction, use `-c` to select the training to use the `configs/det/det_db_mv3.yml` configuration file.
For a detailed explanation of the configuration file, please refer to [config](./config_en.md).
Khanh Tran's avatar
Khanh Tran committed
91

92
You can also use `-o` to change the training parameters without modifying the yml file. For example, adjust the training learning rate to 0.0001
licx's avatar
licx committed
93
```shell
LDOUBLEV's avatar
update  
LDOUBLEV committed
94
# single GPU training
95
python3 tools/train.py -c configs/det/det_mv3_db.yml -o   \
Leif's avatar
Leif committed
96
         Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained  \
97
         Optimizer.base_lr=0.0001
LDOUBLEV's avatar
update  
LDOUBLEV committed
98
99

# multi-GPU training
100
# Set the GPU ID used by the '--gpus' parameter.
Leif's avatar
Leif committed
101
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
stephon's avatar
stephon committed
102

Bin Lu's avatar
Bin Lu committed
103
# multi-Node, multi-GPU training
Bin Lu's avatar
Bin Lu committed
104
# Set the IPs of your nodes used by the '--ips' parameter. Set the GPU ID used by the '--gpus' parameter.
stephon's avatar
stephon committed
105
python3 -m paddle.distributed.launch --ips="xx.xx.xx.xx,xx.xx.xx.xx" --gpus '0,1,2,3' tools/train.py -c configs/det/det_mv3_db.yml \
Bin Lu's avatar
Bin Lu committed
106
107
     -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
```
stephon's avatar
stephon committed
108
109
**Note:** For multi-Node multi-GPU training, you need to replace the `ips` value in the preceding command with the address of your machine, and the machines must be able to ping each other. In addition, it requires activating commands separately on multiple machines when we start the training. The command for viewing the IP address of the machine is `ifconfig`.

Bin Lu's avatar
Bin Lu committed
110
If you want to further speed up the training, you can use [automatic mixed precision training](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/01_paddle2.0_introduction/basic_concept/amp_en.html). for single card training, the command is as follows:
Bin Lu's avatar
Bin Lu committed
111
112
113
114
```
python3 tools/train.py -c configs/det/det_mv3_db.yml \
     -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained \
     Global.use_amp=True Global.scale_loss=1024.0 Global.use_dynamic_loss_scaling=True
Khanh Tran's avatar
Khanh Tran committed
115
116
```

117
### 2.2 Load Trained Model and Continue Training
118
If you expect to load trained model and continue the training again, you can specify the parameter `Global.checkpoints` as the model path to be loaded.
LDOUBLEV's avatar
LDOUBLEV committed
119
120

For example:
licx's avatar
licx committed
121
```shell
LDOUBLEV's avatar
LDOUBLEV committed
122
python3 tools/train.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=./your/trained/model
LDOUBLEV's avatar
LDOUBLEV committed
123
124
```

Leif's avatar
Leif committed
125
**Note**: The priority of `Global.checkpoints` is higher than that of `Global.pretrained_model`, that is, when two parameters are specified at the same time, the model specified by `Global.checkpoints` will be loaded first. If the model path specified by `Global.checkpoints` is wrong, the one specified by `Global.pretrained_model` will be loaded.
LDOUBLEV's avatar
LDOUBLEV committed
126
127


128
### 2.3 Training with New Backbone
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

The network part completes the construction of the network, and PaddleOCR divides the network into four parts, which are under [ppocr/modeling](../../ppocr/modeling). The data entering the network will pass through these four parts in sequence(transforms->backbones->
necks->heads).

```bash
├── architectures # Code for building network
├── transforms    # Image Transformation Module
├── backbones     # Feature extraction module
├── necks         # Feature enhancement module
└── heads         # Output module
```

If the Backbone to be replaced has a corresponding implementation in PaddleOCR, you can directly modify the parameters in the `Backbone` part of the configuration yml file.

However, if you want to use a new Backbone, an example of replacing the backbones is as follows:

1. Create a new file under the [ppocr/modeling/backbones](../../ppocr/modeling/backbones) folder, such as my_backbone.py.
2. Add code in the my_backbone.py file, the sample code is as follows:

```python
import paddle
import paddle.nn as nn
import paddle.nn.functional as F


class MyBackbone(nn.Layer):
    def __init__(self, *args, **kwargs):
        super(MyBackbone, self).__init__()
        # your init code
        self.conv = nn.xxxx

    def forward(self, inputs):
        # your network forward
        y = self.conv(inputs)
        return y
```

3. Import the added module in the [ppocr/modeling/backbones/\__init\__.py](../../ppocr/modeling/backbones/__init__.py) file.

After adding the four-part modules of the network, you only need to configure them in the configuration file to use, such as:

```yaml
  Backbone:
    name: MyBackbone
    args1: args1
```

**NOTE**: More details about replace Backbone and other mudule can be found in [doc](add_new_algorithm_en.md).

178
179
180
181
182

### 2.4 Training with knowledge distillation

Knowledge distillation is supported in PaddleOCR for text detection training process. For more details, please refer to [doc](./knowledge_distillation_en.md).

183
184
185
## 3. Evaluation and Test

### 3.1 Evaluation
Khanh Tran's avatar
Khanh Tran committed
186

187
PaddleOCR calculates three indicators for evaluating performance of OCR detection task: Precision, Recall, and Hmean(F-Score).
Khanh Tran's avatar
Khanh Tran committed
188

LDOUBLEV's avatar
LDOUBLEV committed
189
Run the following code to calculate the evaluation indicators. The result will be saved in the test result file specified by `save_res_path` in the configuration file `det_db_mv3.yml`
Khanh Tran's avatar
Khanh Tran committed
190

191
When evaluating, set post-processing parameters `box_thresh=0.6`, `unclip_ratio=1.5`. If you use different datasets, different models for training, these two parameters should be adjusted for better result.
Khanh Tran's avatar
Khanh Tran committed
192

LDOUBLEV's avatar
LDOUBLEV committed
193
The model parameters during training are saved in the `Global.save_model_dir` directory by default. When evaluating indicators, you need to set `Global.checkpoints` to point to the saved parameter file.
licx's avatar
licx committed
194
```shell
LDOUBLEV's avatar
LDOUBLEV committed
195
python3 tools/eval.py -c configs/det/det_mv3_db.yml  -o Global.checkpoints="{path/to/weights}/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
Khanh Tran's avatar
Khanh Tran committed
196
197
```

198
* Note: `box_thresh` and `unclip_ratio` are parameters required for DB post-processing, and not need to be set when evaluating the EAST and SAST model.
Khanh Tran's avatar
Khanh Tran committed
199

200
### 3.2 Test
Khanh Tran's avatar
Khanh Tran committed
201
202

Test the detection result on a single image:
203
```shell
204
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy"
Khanh Tran's avatar
Khanh Tran committed
205
206
207
```

When testing the DB model, adjust the post-processing threshold:
208
```shell
209
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy"  PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=2.0
Khanh Tran's avatar
Khanh Tran committed
210
211
212
213
```


Test the detection result on all images in the folder:
214
```shell
215
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/" Global.pretrained_model="./output/det_db/best_accuracy"
Khanh Tran's avatar
Khanh Tran committed
216
```
217

218
## 4. Inference
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.

The model saved during the training process is the checkpoints model, which saves the parameters of the model and is mostly used to resume training.

Compared with the checkpoints model, the inference model will additionally save the structural information of the model. Therefore, it is easier to deploy because the model structure and model parameters are already solidified in the inference model file, and is suitable for integration with actual systems.

Firstly, we can convert DB trained model to inference model:
```shell
python3 tools/export_model.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model="./output/det_db/best_accuracy" Global.save_inference_dir="./output/det_db_inference/"
```

The detection inference model prediction:
```shell
python3 tools/infer/predict_det.py --det_algorithm="DB" --det_model_dir="./output/det_db_inference/" --image_dir="./doc/imgs/" --use_gpu=True
```

If it is other detection algorithms, such as the EAST, the det_algorithm parameter needs to be modified to EAST, and the default is the DB algorithm:
```shell
python3 tools/infer/predict_det.py --det_algorithm="EAST" --det_model_dir="./output/det_db_inference/" --image_dir="./doc/imgs/" --use_gpu=True
```

241
## 5. FAQ
242
243

Q1: The prediction results of trained model and inference model are inconsistent?
244

245
246
247
**A**: Most of the problems are caused by the inconsistency of the pre-processing and post-processing parameters during the prediction of the trained model and the pre-processing and post-processing parameters during the prediction of the inference model. Taking the model trained by the det_mv3_db.yml configuration file as an example, the solution to the problem of inconsistent prediction results between the training model and the inference model is as follows:
- Check whether the [trained model preprocessing](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/configs/det/det_mv3_db.yml#L116) is consistent with the prediction [preprocessing function of the inference model](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/tools/infer/predict_det.py#L42). When the algorithm is evaluated, the input image size will affect the accuracy. In order to be consistent with the paper, the image is resized to [736, 1280] in the training icdar15 configuration file, but there is only a set of default parameters when the inference model predicts, which will be considered To predict the speed problem, the longest side of the image is limited to 960 for resize by default. The preprocessing function of the training model preprocessing and the inference model is located in [ppocr/data/imaug/operators.py](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/ppocr/data/imaug/operators.py#L147)
- Check whether the [post-processing of the trained model](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/configs/det/det_mv3_db.yml#L51) is consistent with the [post-processing parameters of the inference](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/tools/infer/utility.py#L50).