operators.py 15.5 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
"""
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import sys
import six
import cv2
import numpy as np
zhiminzhang0830's avatar
zhiminzhang0830 committed
26
import math
WenmuZhou's avatar
WenmuZhou committed
27
28
29
30
31


class DecodeImage(object):
    """ decode image """

zhiminzhang0830's avatar
zhiminzhang0830 committed
32
33
34
35
36
    def __init__(self,
                 img_mode='RGB',
                 channel_first=False,
                 ignore_orientation=False,
                 **kwargs):
WenmuZhou's avatar
WenmuZhou committed
37
38
        self.img_mode = img_mode
        self.channel_first = channel_first
zhiminzhang0830's avatar
zhiminzhang0830 committed
39
        self.ignore_orientation = ignore_orientation
WenmuZhou's avatar
WenmuZhou committed
40
41
42
43
44
45
46
47
48
49

    def __call__(self, data):
        img = data['image']
        if six.PY2:
            assert type(img) is str and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        else:
            assert type(img) is bytes and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        img = np.frombuffer(img, dtype='uint8')
zhiminzhang0830's avatar
zhiminzhang0830 committed
50
51
52
53
54
        if self.ignore_orientation:
            img = cv2.imdecode(img, cv2.IMREAD_IGNORE_ORIENTATION |
                               cv2.IMREAD_COLOR)
        else:
            img = cv2.imdecode(img, 1)
LDOUBLEV's avatar
LDOUBLEV committed
55
56
        if img is None:
            return None
WenmuZhou's avatar
WenmuZhou committed
57
58
59
60
61
62
63
64
65
66
67
68
69
        if self.img_mode == 'GRAY':
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        elif self.img_mode == 'RGB':
            assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
            img = img[:, :, ::-1]

        if self.channel_first:
            img = img.transpose((2, 0, 1))

        data['image'] = img
        return data


Topdu's avatar
Topdu committed
70
71
72
class NRTRDecodeImage(object):
    """ decode image """

zhiminzhang0830's avatar
zhiminzhang0830 committed
73
    def __init__(self, img_mode='RGB', channel_first=False, **kwargs):
Topdu's avatar
Topdu committed
74
75
76
77
78
79
80
81
82
83
84
85
86
        self.img_mode = img_mode
        self.channel_first = channel_first

    def __call__(self, data):
        img = data['image']
        if six.PY2:
            assert type(img) is str and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        else:
            assert type(img) is bytes and len(
                img) > 0, "invalid input 'img' in DecodeImage"
        img = np.frombuffer(img, dtype='uint8')

zhiminzhang0830's avatar
zhiminzhang0830 committed
87
        img = cv2.imdecode(img, 1)
Topdu's avatar
Topdu committed
88
89
90
91
92
93
94
95

        if img is None:
            return None
        if self.img_mode == 'GRAY':
            img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
        elif self.img_mode == 'RGB':
            assert img.shape[2] == 3, 'invalid shape of image[%s]' % (img.shape)
            img = img[:, :, ::-1]
tink2123's avatar
tink2123 committed
96
        img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
Topdu's avatar
Topdu committed
97
98
99
100
101
        if self.channel_first:
            img = img.transpose((2, 0, 1))
        data['image'] = img
        return data

tink2123's avatar
tink2123 committed
102

WenmuZhou's avatar
WenmuZhou committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
class NormalizeImage(object):
    """ normalize image such as substract mean, divide std
    """

    def __init__(self, scale=None, mean=None, std=None, order='chw', **kwargs):
        if isinstance(scale, str):
            scale = eval(scale)
        self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
        mean = mean if mean is not None else [0.485, 0.456, 0.406]
        std = std if std is not None else [0.229, 0.224, 0.225]

        shape = (3, 1, 1) if order == 'chw' else (1, 1, 3)
        self.mean = np.array(mean).reshape(shape).astype('float32')
        self.std = np.array(std).reshape(shape).astype('float32')

    def __call__(self, data):
        img = data['image']
        from PIL import Image
        if isinstance(img, Image.Image):
            img = np.array(img)
        assert isinstance(img,
                          np.ndarray), "invalid input 'img' in NormalizeImage"
        data['image'] = (
            img.astype('float32') * self.scale - self.mean) / self.std
        return data


class ToCHWImage(object):
    """ convert hwc image to chw image
    """

    def __init__(self, **kwargs):
        pass

    def __call__(self, data):
        img = data['image']
        from PIL import Image
        if isinstance(img, Image.Image):
            img = np.array(img)
        data['image'] = img.transpose((2, 0, 1))
        return data


tink2123's avatar
tink2123 committed
146
147
class Fasttext(object):
    def __init__(self, path="None", **kwargs):
tink2123's avatar
tink2123 committed
148
        import fasttext
tink2123's avatar
tink2123 committed
149
150
151
152
153
154
155
156
157
        self.fast_model = fasttext.load_model(path)

    def __call__(self, data):
        label = data['label']
        fast_label = self.fast_model[label]
        data['fast_label'] = fast_label
        return data


dyning's avatar
dyning committed
158
class KeepKeys(object):
WenmuZhou's avatar
WenmuZhou committed
159
160
161
162
163
164
165
166
167
168
    def __init__(self, keep_keys, **kwargs):
        self.keep_keys = keep_keys

    def __call__(self, data):
        data_list = []
        for key in self.keep_keys:
            data_list.append(data[key])
        return data_list


zhiminzhang0830's avatar
zhiminzhang0830 committed
169
class Pad(object):
zhiminzhang0830's avatar
zhiminzhang0830 committed
170
171
172
173
174
175
176
    def __init__(self, size=None, size_div=32, **kwargs):
        if size is not None and not isinstance(size, (int, list, tuple)):
            raise TypeError("Type of target_size is invalid. Now is {}".format(
                type(size)))
        if isinstance(size, int):
            size = [size, size]
        self.size = size
zhiminzhang0830's avatar
zhiminzhang0830 committed
177
178
179
180
181
        self.size_div = size_div

    def __call__(self, data):

        img = data['image']
zhiminzhang0830's avatar
zhiminzhang0830 committed
182
183
184
185
186
187
188
189
190
191
192
193
194
        img_h, img_w = img.shape[0], img.shape[1]
        if self.size:
            resize_h2, resize_w2 = self.size
            assert (
                img_h < resize_h2 and img_w < resize_w2
            ), '(h, w) of target size should be greater than (img_h, img_w)'
        else:
            resize_h2 = max(
                int(math.ceil(img.shape[0] / self.size_div) * self.size_div),
                self.size_div)
            resize_w2 = max(
                int(math.ceil(img.shape[1] / self.size_div) * self.size_div),
                self.size_div)
zhiminzhang0830's avatar
zhiminzhang0830 committed
195
196
197
        img = cv2.copyMakeBorder(
            img,
            0,
zhiminzhang0830's avatar
zhiminzhang0830 committed
198
            resize_h2 - img_h,
zhiminzhang0830's avatar
zhiminzhang0830 committed
199
            0,
zhiminzhang0830's avatar
zhiminzhang0830 committed
200
            resize_w2 - img_w,
zhiminzhang0830's avatar
zhiminzhang0830 committed
201
202
203
204
205
206
            cv2.BORDER_CONSTANT,
            value=0)
        data['image'] = img
        return data


LDOUBLEV's avatar
LDOUBLEV committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
class Resize(object):
    def __init__(self, size=(640, 640), **kwargs):
        self.size = size

    def resize_image(self, img):
        resize_h, resize_w = self.size
        ori_h, ori_w = img.shape[:2]  # (h, w, c)
        ratio_h = float(resize_h) / ori_h
        ratio_w = float(resize_w) / ori_w
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
        return img, [ratio_h, ratio_w]

    def __call__(self, data):
        img = data['image']
221
222
        if 'polys' in data:
            text_polys = data['polys']
LDOUBLEV's avatar
LDOUBLEV committed
223
224

        img_resize, [ratio_h, ratio_w] = self.resize_image(img)
225
226
227
228
229
230
231
232
        if 'polys' in data:
            new_boxes = []
            for box in text_polys:
                new_box = []
                for cord in box:
                    new_box.append([cord[0] * ratio_w, cord[1] * ratio_h])
                new_boxes.append(new_box)
            data['polys'] = np.array(new_boxes, dtype=np.float32)
LDOUBLEV's avatar
LDOUBLEV committed
233
234
235
236
        data['image'] = img_resize
        return data


WenmuZhou's avatar
WenmuZhou committed
237
238
239
240
241
242
243
class DetResizeForTest(object):
    def __init__(self, **kwargs):
        super(DetResizeForTest, self).__init__()
        self.resize_type = 0
        if 'image_shape' in kwargs:
            self.image_shape = kwargs['image_shape']
            self.resize_type = 1
zhoujun's avatar
zhoujun committed
244
        elif 'limit_side_len' in kwargs:
WenmuZhou's avatar
WenmuZhou committed
245
246
            self.limit_side_len = kwargs['limit_side_len']
            self.limit_type = kwargs.get('limit_type', 'min')
zhoujun's avatar
zhoujun committed
247
        elif 'resize_long' in kwargs:
MissPenguin's avatar
MissPenguin committed
248
249
            self.resize_type = 2
            self.resize_long = kwargs.get('resize_long', 960)
WenmuZhou's avatar
WenmuZhou committed
250
251
252
253
254
255
        else:
            self.limit_side_len = 736
            self.limit_type = 'min'

    def __call__(self, data):
        img = data['image']
MissPenguin's avatar
MissPenguin committed
256
        src_h, src_w, _ = img.shape
WenmuZhou's avatar
WenmuZhou committed
257
258

        if self.resize_type == 0:
MissPenguin's avatar
MissPenguin committed
259
260
261
262
            # img, shape = self.resize_image_type0(img)
            img, [ratio_h, ratio_w] = self.resize_image_type0(img)
        elif self.resize_type == 2:
            img, [ratio_h, ratio_w] = self.resize_image_type2(img)
WenmuZhou's avatar
WenmuZhou committed
263
        else:
MissPenguin's avatar
MissPenguin committed
264
265
            # img, shape = self.resize_image_type1(img)
            img, [ratio_h, ratio_w] = self.resize_image_type1(img)
WenmuZhou's avatar
WenmuZhou committed
266
        data['image'] = img
MissPenguin's avatar
MissPenguin committed
267
        data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
WenmuZhou's avatar
WenmuZhou committed
268
269
270
271
272
        return data

    def resize_image_type1(self, img):
        resize_h, resize_w = self.image_shape
        ori_h, ori_w = img.shape[:2]  # (h, w, c)
MissPenguin's avatar
MissPenguin committed
273
274
        ratio_h = float(resize_h) / ori_h
        ratio_w = float(resize_w) / ori_w
WenmuZhou's avatar
WenmuZhou committed
275
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
MissPenguin's avatar
MissPenguin committed
276
277
        # return img, np.array([ori_h, ori_w])
        return img, [ratio_h, ratio_w]
WenmuZhou's avatar
WenmuZhou committed
278
279
280
281
282
283
284
285
286
287

    def resize_image_type0(self, img):
        """
        resize image to a size multiple of 32 which is required by the network
        args:
            img(array): array with shape [h, w, c]
        return(tuple):
            img, (ratio_h, ratio_w)
        """
        limit_side_len = self.limit_side_len
WenmuZhou's avatar
WenmuZhou committed
288
        h, w, c = img.shape
WenmuZhou's avatar
WenmuZhou committed
289
290
291
292
293
294
295
296
297
298

        # limit the max side
        if self.limit_type == 'max':
            if max(h, w) > limit_side_len:
                if h > w:
                    ratio = float(limit_side_len) / h
                else:
                    ratio = float(limit_side_len) / w
            else:
                ratio = 1.
WenmuZhou's avatar
WenmuZhou committed
299
        elif self.limit_type == 'min':
WenmuZhou's avatar
WenmuZhou committed
300
301
302
303
304
305
306
            if min(h, w) < limit_side_len:
                if h < w:
                    ratio = float(limit_side_len) / h
                else:
                    ratio = float(limit_side_len) / w
            else:
                ratio = 1.
WenmuZhou's avatar
WenmuZhou committed
307
        elif self.limit_type == 'resize_long':
LDOUBLEV's avatar
LDOUBLEV committed
308
            ratio = float(limit_side_len) / max(h, w)
WenmuZhou's avatar
WenmuZhou committed
309
310
        else:
            raise Exception('not support limit type, image ')
WenmuZhou's avatar
WenmuZhou committed
311
312
313
        resize_h = int(h * ratio)
        resize_w = int(w * ratio)

zhoujun's avatar
zhoujun committed
314
315
        resize_h = max(int(round(resize_h / 32) * 32), 32)
        resize_w = max(int(round(resize_w / 32) * 32), 32)
WenmuZhou's avatar
WenmuZhou committed
316
317
318
319
320
321
322
323

        try:
            if int(resize_w) <= 0 or int(resize_h) <= 0:
                return None, (None, None)
            img = cv2.resize(img, (int(resize_w), int(resize_h)))
        except:
            print(img.shape, resize_w, resize_h)
            sys.exit(0)
MissPenguin's avatar
MissPenguin committed
324
325
326
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)
        return img, [ratio_h, ratio_w]
LDOUBLEV's avatar
LDOUBLEV committed
327

MissPenguin's avatar
MissPenguin committed
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
    def resize_image_type2(self, img):
        h, w, _ = img.shape

        resize_w = w
        resize_h = h

        if resize_h > resize_w:
            ratio = float(self.resize_long) / resize_h
        else:
            ratio = float(self.resize_long) / resize_w

        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)

        max_stride = 128
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        img = cv2.resize(img, (int(resize_w), int(resize_h)))
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)

        return img, [ratio_h, ratio_w]
Jethong's avatar
Jethong committed
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372


class E2EResizeForTest(object):
    def __init__(self, **kwargs):
        super(E2EResizeForTest, self).__init__()
        self.max_side_len = kwargs['max_side_len']
        self.valid_set = kwargs['valid_set']

    def __call__(self, data):
        img = data['image']
        src_h, src_w, _ = img.shape
        if self.valid_set == 'totaltext':
            im_resized, [ratio_h, ratio_w] = self.resize_image_for_totaltext(
                img, max_side_len=self.max_side_len)
        else:
            im_resized, (ratio_h, ratio_w) = self.resize_image(
                img, max_side_len=self.max_side_len)
        data['image'] = im_resized
        data['shape'] = np.array([src_h, src_w, ratio_h, ratio_w])
        return data

    def resize_image_for_totaltext(self, im, max_side_len=512):

373
        h, w, _ = im.shape
Jethong's avatar
Jethong committed
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
        resize_w = w
        resize_h = h
        ratio = 1.25
        if h * ratio > max_side_len:
            ratio = float(max_side_len) / resize_h
        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)

        max_stride = 128
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        im = cv2.resize(im, (int(resize_w), int(resize_h)))
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)
        return im, (ratio_h, ratio_w)

    def resize_image(self, im, max_side_len=512):
        """
        resize image to a size multiple of max_stride which is required by the network
        :param im: the resized image
        :param max_side_len: limit of max image size to avoid out of memory in gpu
        :return: the resized image and the resize ratio
        """
        h, w, _ = im.shape

        resize_w = w
        resize_h = h

        # Fix the longer side
        if resize_h > resize_w:
            ratio = float(max_side_len) / resize_h
        else:
            ratio = float(max_side_len) / resize_w

        resize_h = int(resize_h * ratio)
        resize_w = int(resize_w * ratio)

        max_stride = 128
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        im = cv2.resize(im, (int(resize_w), int(resize_h)))
        ratio_h = resize_h / float(h)
        ratio_w = resize_w / float(w)

        return im, (ratio_h, ratio_w)
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
419
420
421
422
423
424
425
426
427
428
429
430


class KieResize(object):
    def __init__(self, **kwargs):
        super(KieResize, self).__init__()
        self.max_side, self.min_side = kwargs['img_scale'][0], kwargs[
            'img_scale'][1]

    def __call__(self, data):
        img = data['image']
        points = data['points']
        src_h, src_w, _ = img.shape
LDOUBLEV's avatar
debug  
LDOUBLEV committed
431
432
        im_resized, scale_factor, [ratio_h, ratio_w
                                   ], [new_h, new_w] = self.resize_image(img)
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
433
434
435
436
437
        resize_points = self.resize_boxes(img, points, scale_factor)
        data['ori_image'] = img
        data['ori_boxes'] = points
        data['points'] = resize_points
        data['image'] = im_resized
LDOUBLEV's avatar
debug  
LDOUBLEV committed
438
        data['shape'] = np.array([new_h, new_w])
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
439
440
441
        return data

    def resize_image(self, img):
LDOUBLEV's avatar
debug  
LDOUBLEV committed
442
        norm_img = np.zeros([1024, 1024, 3], dtype='float32')
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
443
444
445
446
447
448
        scale = [512, 1024]
        h, w = img.shape[:2]
        max_long_edge = max(scale)
        max_short_edge = min(scale)
        scale_factor = min(max_long_edge / max(h, w),
                           max_short_edge / min(h, w))
LDOUBLEV's avatar
debug  
LDOUBLEV committed
449
450
451
452
453
454
        resize_w, resize_h = int(w * float(scale_factor) + 0.5), int(h * float(
            scale_factor) + 0.5)
        max_stride = 32
        resize_h = (resize_h + max_stride - 1) // max_stride * max_stride
        resize_w = (resize_w + max_stride - 1) // max_stride * max_stride
        im = cv2.resize(img, (resize_w, resize_h))
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
455
456
457
458
459
460
        new_h, new_w = im.shape[:2]
        w_scale = new_w / w
        h_scale = new_h / h
        scale_factor = np.array(
            [w_scale, h_scale, w_scale, h_scale], dtype=np.float32)
        norm_img[:new_h, :new_w, :] = im
LDOUBLEV's avatar
debug  
LDOUBLEV committed
461
        return norm_img, scale_factor, [h_scale, w_scale], [new_h, new_w]
LDOUBLEV's avatar
add kie  
LDOUBLEV committed
462
463
464
465
466
467
468

    def resize_boxes(self, im, points, scale_factor):
        points = points * scale_factor
        img_shape = im.shape[:2]
        points[:, 0::2] = np.clip(points[:, 0::2], 0, img_shape[1])
        points[:, 1::2] = np.clip(points[:, 1::2], 0, img_shape[0])
        return points