det_mobilenet_v3.py 9.56 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
LDOUBLEV's avatar
LDOUBLEV committed
2
#
WenmuZhou's avatar
WenmuZhou committed
3
4
5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
LDOUBLEV's avatar
LDOUBLEV committed
6
7
8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
WenmuZhou's avatar
WenmuZhou committed
9
10
11
12
13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
LDOUBLEV's avatar
LDOUBLEV committed
14
15
16
17
18

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

WenmuZhou's avatar
WenmuZhou committed
19
20
21
22
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle import ParamAttr
LDOUBLEV's avatar
LDOUBLEV committed
23
24
25
26

__all__ = ['MobileNetV3']


WenmuZhou's avatar
WenmuZhou committed
27
28
29
30
31
32
33
34
35
36
def make_divisible(v, divisor=8, min_value=None):
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


class MobileNetV3(nn.Layer):
LDOUBLEV's avatar
LDOUBLEV committed
37
38
39
40
41
42
    def __init__(self,
                 in_channels=3,
                 model_name='large',
                 scale=0.5,
                 disable_se=False,
                 **kwargs):
LDOUBLEV's avatar
LDOUBLEV committed
43
44
45
46
47
        """
        the MobilenetV3 backbone network for detection module.
        Args:
            params(dict): the super parameters for build network
        """
WenmuZhou's avatar
WenmuZhou committed
48
        super(MobileNetV3, self).__init__()
LDOUBLEV's avatar
LDOUBLEV committed
49
50
51

        self.disable_se = disable_se

LDOUBLEV's avatar
LDOUBLEV committed
52
        if model_name == "large":
WenmuZhou's avatar
WenmuZhou committed
53
            cfg = [
LDOUBLEV's avatar
LDOUBLEV committed
54
55
56
57
58
59
60
                # k, exp, c,  se,     nl,  s,
                [3, 16, 16, False, 'relu', 1],
                [3, 64, 24, False, 'relu', 2],
                [3, 72, 24, False, 'relu', 1],
                [5, 72, 40, True, 'relu', 2],
                [5, 120, 40, True, 'relu', 1],
                [5, 120, 40, True, 'relu', 1],
61
62
63
64
65
66
67
68
69
                [3, 240, 80, False, 'hardswish', 2],
                [3, 200, 80, False, 'hardswish', 1],
                [3, 184, 80, False, 'hardswish', 1],
                [3, 184, 80, False, 'hardswish', 1],
                [3, 480, 112, True, 'hardswish', 1],
                [3, 672, 112, True, 'hardswish', 1],
                [5, 672, 160, True, 'hardswish', 2],
                [5, 960, 160, True, 'hardswish', 1],
                [5, 960, 160, True, 'hardswish', 1],
LDOUBLEV's avatar
LDOUBLEV committed
70
            ]
WenmuZhou's avatar
WenmuZhou committed
71
            cls_ch_squeeze = 960
LDOUBLEV's avatar
LDOUBLEV committed
72
        elif model_name == "small":
WenmuZhou's avatar
WenmuZhou committed
73
            cfg = [
LDOUBLEV's avatar
LDOUBLEV committed
74
75
76
77
                # k, exp, c,  se,     nl,  s,
                [3, 16, 16, True, 'relu', 2],
                [3, 72, 24, False, 'relu', 2],
                [3, 88, 24, False, 'relu', 1],
78
79
80
81
82
83
84
85
                [5, 96, 40, True, 'hardswish', 2],
                [5, 240, 40, True, 'hardswish', 1],
                [5, 240, 40, True, 'hardswish', 1],
                [5, 120, 48, True, 'hardswish', 1],
                [5, 144, 48, True, 'hardswish', 1],
                [5, 288, 96, True, 'hardswish', 2],
                [5, 576, 96, True, 'hardswish', 1],
                [5, 576, 96, True, 'hardswish', 1],
LDOUBLEV's avatar
LDOUBLEV committed
86
            ]
WenmuZhou's avatar
WenmuZhou committed
87
            cls_ch_squeeze = 576
LDOUBLEV's avatar
LDOUBLEV committed
88
89
90
91
92
        else:
            raise NotImplementedError("mode[" + model_name +
                                      "_model] is not implemented!")

        supported_scale = [0.35, 0.5, 0.75, 1.0, 1.25]
WenmuZhou's avatar
WenmuZhou committed
93
94
95
96
97
98
99
100
        assert scale in supported_scale, \
            "supported scale are {} but input scale is {}".format(supported_scale, scale)
        inplanes = 16
        # conv1
        self.conv = ConvBNLayer(
            in_channels=in_channels,
            out_channels=make_divisible(inplanes * scale),
            kernel_size=3,
LDOUBLEV's avatar
LDOUBLEV committed
101
102
            stride=2,
            padding=1,
WenmuZhou's avatar
WenmuZhou committed
103
            groups=1,
LDOUBLEV's avatar
LDOUBLEV committed
104
            if_act=True,
105
            act='hardswish',
LDOUBLEV's avatar
LDOUBLEV committed
106
            name='conv1')
WenmuZhou's avatar
WenmuZhou committed
107
108
109
110

        self.stages = []
        self.out_channels = []
        block_list = []
LDOUBLEV's avatar
LDOUBLEV committed
111
        i = 0
WenmuZhou's avatar
WenmuZhou committed
112
113
        inplanes = make_divisible(inplanes * scale)
        for (k, exp, c, se, nl, s) in cfg:
114
            se = se and not self.disable_se
WenmuZhou's avatar
WenmuZhou committed
115
116
            start_idx = 2 if model_name == 'large' else 0
            if s == 2 and i > start_idx:
WenmuZhou's avatar
WenmuZhou committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
                self.out_channels.append(inplanes)
                self.stages.append(nn.Sequential(*block_list))
                block_list = []
            block_list.append(
                ResidualUnit(
                    in_channels=inplanes,
                    mid_channels=make_divisible(scale * exp),
                    out_channels=make_divisible(scale * c),
                    kernel_size=k,
                    stride=s,
                    use_se=se,
                    act=nl,
                    name="conv" + str(i + 2)))
            inplanes = make_divisible(scale * c)
LDOUBLEV's avatar
LDOUBLEV committed
131
            i += 1
WenmuZhou's avatar
WenmuZhou committed
132
133
134
135
136
137
138
139
140
        block_list.append(
            ConvBNLayer(
                in_channels=inplanes,
                out_channels=make_divisible(scale * cls_ch_squeeze),
                kernel_size=1,
                stride=1,
                padding=0,
                groups=1,
                if_act=True,
141
                act='hardswish',
WenmuZhou's avatar
WenmuZhou committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
                name='conv_last'))
        self.stages.append(nn.Sequential(*block_list))
        self.out_channels.append(make_divisible(scale * cls_ch_squeeze))
        for i, stage in enumerate(self.stages):
            self.add_sublayer(sublayer=stage, name="stage{}".format(i))

    def forward(self, x):
        x = self.conv(x)
        out_list = []
        for stage in self.stages:
            x = stage(x)
            out_list.append(x)
        return out_list


class ConvBNLayer(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride,
                 padding,
                 groups=1,
                 if_act=True,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()
        self.if_act = if_act
        self.act = act
dyning's avatar
dyning committed
171
        self.conv = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
172
173
174
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
LDOUBLEV's avatar
LDOUBLEV committed
175
176
            stride=stride,
            padding=padding,
WenmuZhou's avatar
WenmuZhou committed
177
178
            groups=groups,
            weight_attr=ParamAttr(name=name + '_weights'),
LDOUBLEV's avatar
LDOUBLEV committed
179
            bias_attr=False)
WenmuZhou's avatar
WenmuZhou committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194

        self.bn = nn.BatchNorm(
            num_channels=out_channels,
            act=None,
            param_attr=ParamAttr(name=name + "_bn_scale"),
            bias_attr=ParamAttr(name=name + "_bn_offset"),
            moving_mean_name=name + "_bn_mean",
            moving_variance_name=name + "_bn_variance")

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        if self.if_act:
            if self.act == "relu":
                x = F.relu(x)
195
196
            elif self.act == "hardswish":
                x = F.hardswish(x)
WenmuZhou's avatar
WenmuZhou committed
197
            else:
198
199
                print("The activation function({}) is selected incorrectly.".
                      format(self.act))
WenmuZhou's avatar
WenmuZhou committed
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
                exit()
        return x


class ResidualUnit(nn.Layer):
    def __init__(self,
                 in_channels,
                 mid_channels,
                 out_channels,
                 kernel_size,
                 stride,
                 use_se,
                 act=None,
                 name=''):
        super(ResidualUnit, self).__init__()
        self.if_shortcut = stride == 1 and in_channels == out_channels
        self.if_se = use_se

        self.expand_conv = ConvBNLayer(
            in_channels=in_channels,
            out_channels=mid_channels,
            kernel_size=1,
LDOUBLEV's avatar
LDOUBLEV committed
222
223
224
225
            stride=1,
            padding=0,
            if_act=True,
            act=act,
WenmuZhou's avatar
WenmuZhou committed
226
227
228
229
230
            name=name + "_expand")
        self.bottleneck_conv = ConvBNLayer(
            in_channels=mid_channels,
            out_channels=mid_channels,
            kernel_size=kernel_size,
LDOUBLEV's avatar
LDOUBLEV committed
231
            stride=stride,
WenmuZhou's avatar
WenmuZhou committed
232
233
            padding=int((kernel_size - 1) // 2),
            groups=mid_channels,
LDOUBLEV's avatar
LDOUBLEV committed
234
235
            if_act=True,
            act=act,
WenmuZhou's avatar
WenmuZhou committed
236
            name=name + "_depthwise")
237
        if self.if_se:
WenmuZhou's avatar
WenmuZhou committed
238
239
240
241
242
            self.mid_se = SEModule(mid_channels, name=name + "_se")
        self.linear_conv = ConvBNLayer(
            in_channels=mid_channels,
            out_channels=out_channels,
            kernel_size=1,
LDOUBLEV's avatar
LDOUBLEV committed
243
244
245
            stride=1,
            padding=0,
            if_act=False,
WenmuZhou's avatar
WenmuZhou committed
246
247
248
249
250
251
            act=None,
            name=name + "_linear")

    def forward(self, inputs):
        x = self.expand_conv(inputs)
        x = self.bottleneck_conv(x)
252
        if self.if_se:
WenmuZhou's avatar
WenmuZhou committed
253
254
255
            x = self.mid_se(x)
        x = self.linear_conv(x)
        if self.if_shortcut:
dyning's avatar
dyning committed
256
            x = paddle.add(inputs, x)
WenmuZhou's avatar
WenmuZhou committed
257
258
259
260
261
262
        return x


class SEModule(nn.Layer):
    def __init__(self, in_channels, reduction=4, name=""):
        super(SEModule, self).__init__()
dyning's avatar
dyning committed
263
264
        self.avg_pool = nn.AdaptiveAvgPool2D(1)
        self.conv1 = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
265
266
267
268
269
270
271
            in_channels=in_channels,
            out_channels=in_channels // reduction,
            kernel_size=1,
            stride=1,
            padding=0,
            weight_attr=ParamAttr(name=name + "_1_weights"),
            bias_attr=ParamAttr(name=name + "_1_offset"))
dyning's avatar
dyning committed
272
        self.conv2 = nn.Conv2D(
WenmuZhou's avatar
WenmuZhou committed
273
274
275
276
277
278
279
280
281
282
283
284
285
            in_channels=in_channels // reduction,
            out_channels=in_channels,
            kernel_size=1,
            stride=1,
            padding=0,
            weight_attr=ParamAttr(name + "_2_weights"),
            bias_attr=ParamAttr(name=name + "_2_offset"))

    def forward(self, inputs):
        outputs = self.avg_pool(inputs)
        outputs = self.conv1(outputs)
        outputs = F.relu(outputs)
        outputs = self.conv2(outputs)
286
        outputs = F.hardsigmoid(outputs, slope=0.2, offset=0.5)
LDOUBLEV's avatar
LDOUBLEV committed
287
        return inputs * outputs