tps.py 11 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

WenmuZhou's avatar
WenmuZhou committed
19
import math
WenmuZhou's avatar
WenmuZhou committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import paddle
from paddle import nn, ParamAttr
from paddle.nn import functional as F
import numpy as np


class ConvBNLayer(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 groups=1,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()
        self.conv = nn.Conv2D(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=(kernel_size - 1) // 2,
            groups=groups,
            weight_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
        bn_name = "bn_" + name
        self.bn = nn.BatchNorm(
            out_channels,
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return x


class LocalizationNetwork(nn.Layer):
    def __init__(self, in_channels, num_fiducial, loc_lr, model_name):
        super(LocalizationNetwork, self).__init__()
        self.F = num_fiducial
        F = num_fiducial
        if model_name == "large":
            num_filters_list = [64, 128, 256, 512]
            fc_dim = 256
        else:
            num_filters_list = [16, 32, 64, 128]
            fc_dim = 64

        self.block_list = []
        for fno in range(0, len(num_filters_list)):
            num_filters = num_filters_list[fno]
            name = "loc_conv%d" % fno
            conv = self.add_sublayer(
                name,
                ConvBNLayer(
                    in_channels=in_channels,
                    out_channels=num_filters,
                    kernel_size=3,
                    act='relu',
                    name=name))
            self.block_list.append(conv)
            if fno == len(num_filters_list) - 1:
                pool = nn.AdaptiveAvgPool2D(1)
            else:
                pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
            in_channels = num_filters
            self.block_list.append(pool)
        name = "loc_fc1"
WenmuZhou's avatar
WenmuZhou committed
92
        stdv = 1.0 / math.sqrt(num_filters_list[-1] * 1.0)
WenmuZhou's avatar
WenmuZhou committed
93
94
95
96
        self.fc1 = nn.Linear(
            in_channels,
            fc_dim,
            weight_attr=ParamAttr(
WenmuZhou's avatar
WenmuZhou committed
97
98
99
                learning_rate=loc_lr,
                name=name + "_w",
                initializer=nn.initializer.Uniform(-stdv, stdv)),
WenmuZhou's avatar
WenmuZhou committed
100
101
102
103
104
105
106
107
108
            bias_attr=ParamAttr(name=name + '.b_0'),
            name=name)

        # Init fc2 in LocalizationNetwork
        initial_bias = self.get_initial_fiducials()
        initial_bias = initial_bias.reshape(-1)
        name = "loc_fc2"
        param_attr = ParamAttr(
            learning_rate=loc_lr,
109
            initializer=nn.initializer.Assign(np.zeros([fc_dim, F * 2])),
WenmuZhou's avatar
WenmuZhou committed
110
111
112
            name=name + "_w")
        bias_attr = ParamAttr(
            learning_rate=loc_lr,
113
            initializer=nn.initializer.Assign(initial_bias),
WenmuZhou's avatar
WenmuZhou committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
            name=name + "_b")
        self.fc2 = nn.Linear(
            fc_dim,
            F * 2,
            weight_attr=param_attr,
            bias_attr=bias_attr,
            name=name)
        self.out_channels = F * 2

    def forward(self, x):
        """
           Estimating parameters of geometric transformation
           Args:
               image: input
           Return:
               batch_C_prime: the matrix of the geometric transformation
        """
        B = x.shape[0]
        i = 0
        for block in self.block_list:
            x = block(x)
WenmuZhou's avatar
WenmuZhou committed
135
        x = x.squeeze(axis=2).squeeze(axis=2)
WenmuZhou's avatar
WenmuZhou committed
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
        x = self.fc1(x)

        x = F.relu(x)
        x = self.fc2(x)
        x = x.reshape(shape=[-1, self.F, 2])
        return x

    def get_initial_fiducials(self):
        """ see RARE paper Fig. 6 (a) """
        F = self.F
        ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
        ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2))
        ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2))
        ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
        ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
        initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
        return initial_bias


class GridGenerator(nn.Layer):
    def __init__(self, in_channels, num_fiducial):
        super(GridGenerator, self).__init__()
        self.eps = 1e-6
        self.F = num_fiducial

        name = "ex_fc"
        initializer = nn.initializer.Constant(value=0.0)
        param_attr = ParamAttr(
            learning_rate=0.0, initializer=initializer, name=name + "_w")
        bias_attr = ParamAttr(
            learning_rate=0.0, initializer=initializer, name=name + "_b")
        self.fc = nn.Linear(
            in_channels,
            6,
            weight_attr=param_attr,
            bias_attr=bias_attr,
            name=name)

    def forward(self, batch_C_prime, I_r_size):
        """
        Generate the grid for the grid_sampler.
        Args:
            batch_C_prime: the matrix of the geometric transformation
            I_r_size: the shape of the input image
        Return:
            batch_P_prime: the grid for the grid_sampler
        """
WenmuZhou's avatar
WenmuZhou committed
183
184
185
186
187
188
        C = self.build_C_paddle()
        P = self.build_P_paddle(I_r_size)

        inv_delta_C_tensor = self.build_inv_delta_C_paddle(C).astype('float32')
        P_hat_tensor = self.build_P_hat_paddle(
            C, paddle.to_tensor(P)).astype('float32')
WenmuZhou's avatar
WenmuZhou committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202

        inv_delta_C_tensor.stop_gradient = True
        P_hat_tensor.stop_gradient = True

        batch_C_ex_part_tensor = self.get_expand_tensor(batch_C_prime)

        batch_C_ex_part_tensor.stop_gradient = True

        batch_C_prime_with_zeros = paddle.concat(
            [batch_C_prime, batch_C_ex_part_tensor], axis=1)
        batch_T = paddle.matmul(inv_delta_C_tensor, batch_C_prime_with_zeros)
        batch_P_prime = paddle.matmul(P_hat_tensor, batch_T)
        return batch_P_prime

WenmuZhou's avatar
WenmuZhou committed
203
    def build_C_paddle(self):
WenmuZhou's avatar
WenmuZhou committed
204
205
        """ Return coordinates of fiducial points in I_r; C """
        F = self.F
WenmuZhou's avatar
WenmuZhou committed
206
207
208
        ctrl_pts_x = paddle.linspace(-1.0, 1.0, int(F / 2), dtype='float64')
        ctrl_pts_y_top = -1 * paddle.ones([int(F / 2)], dtype='float64')
        ctrl_pts_y_bottom = paddle.ones([int(F / 2)], dtype='float64')
WenmuZhou's avatar
WenmuZhou committed
209
210
211
        ctrl_pts_top = paddle.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
        ctrl_pts_bottom = paddle.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
        C = paddle.concat([ctrl_pts_top, ctrl_pts_bottom], axis=0)
WenmuZhou's avatar
WenmuZhou committed
212
213
        return C  # F x 2

WenmuZhou's avatar
WenmuZhou committed
214
215
    def build_P_paddle(self, I_r_size):
        I_r_height, I_r_width = I_r_size
WenmuZhou's avatar
WenmuZhou committed
216
217
218
219
220
221
222
223
        I_r_grid_x = (paddle.arange(
            -I_r_width, I_r_width, 2, dtype='float64') + 1.0
                      ) / paddle.to_tensor(np.array([I_r_width]))

        I_r_grid_y = (paddle.arange(
            -I_r_height, I_r_height, 2, dtype='float64') + 1.0
                      ) / paddle.to_tensor(np.array([I_r_height]))

WenmuZhou's avatar
WenmuZhou committed
224
        # P: self.I_r_width x self.I_r_height x 2
WenmuZhou's avatar
WenmuZhou committed
225
226
        P = paddle.stack(paddle.meshgrid(I_r_grid_x, I_r_grid_y), axis=2)
        P = paddle.transpose(P, perm=[1, 0, 2])
WenmuZhou's avatar
WenmuZhou committed
227
228
229
        # n (= self.I_r_width x self.I_r_height) x 2
        return P.reshape([-1, 2])

WenmuZhou's avatar
WenmuZhou committed
230
    def build_inv_delta_C_paddle(self, C):
WenmuZhou's avatar
WenmuZhou committed
231
232
        """ Return inv_delta_C which is needed to calculate T """
        F = self.F
LDOUBLEV's avatar
LDOUBLEV committed
233
        hat_eye = paddle.eye(F, dtype='float64')  # F x F
Double_V's avatar
Double_V committed
234
        hat_C = paddle.norm(C.reshape([1, F, 2]) - C.reshape([F, 1, 2]), axis=2) + hat_eye
WenmuZhou's avatar
WenmuZhou committed
235
236
        hat_C = (hat_C**2) * paddle.log(hat_C)
        delta_C = paddle.concat(  # F+3 x F+3
WenmuZhou's avatar
WenmuZhou committed
237
            [
WenmuZhou's avatar
WenmuZhou committed
238
                paddle.concat(
WenmuZhou's avatar
WenmuZhou committed
239
240
                    [paddle.ones(
                        (F, 1), dtype='float64'), C, hat_C], axis=1),  # F x F+3
WenmuZhou's avatar
WenmuZhou committed
241
                paddle.concat(
WenmuZhou's avatar
WenmuZhou committed
242
243
244
245
246
                    [
                        paddle.zeros(
                            (2, 3), dtype='float64'), paddle.transpose(
                                C, perm=[1, 0])
                    ],
WenmuZhou's avatar
WenmuZhou committed
247
248
                    axis=1),  # 2 x F+3
                paddle.concat(
WenmuZhou's avatar
WenmuZhou committed
249
250
251
252
253
                    [
                        paddle.zeros(
                            (1, 3), dtype='float64'), paddle.ones(
                                (1, F), dtype='float64')
                    ],
WenmuZhou's avatar
WenmuZhou committed
254
                    axis=1)  # 1 x F+3
WenmuZhou's avatar
WenmuZhou committed
255
256
            ],
            axis=0)
WenmuZhou's avatar
WenmuZhou committed
257
        inv_delta_C = paddle.inverse(delta_C)
WenmuZhou's avatar
WenmuZhou committed
258
259
        return inv_delta_C  # F+3 x F+3

WenmuZhou's avatar
WenmuZhou committed
260
    def build_P_hat_paddle(self, C, P):
WenmuZhou's avatar
WenmuZhou committed
261
262
263
264
        F = self.F
        eps = self.eps
        n = P.shape[0]  # n (= self.I_r_width x self.I_r_height)
        # P_tile: n x 2 -> n x 1 x 2 -> n x F x 2
WenmuZhou's avatar
WenmuZhou committed
265
266
        P_tile = paddle.tile(paddle.unsqueeze(P, axis=1), (1, F, 1))
        C_tile = paddle.unsqueeze(C, axis=0)  # 1 x F x 2
WenmuZhou's avatar
WenmuZhou committed
267
268
        P_diff = P_tile - C_tile  # n x F x 2
        # rbf_norm: n x F
WenmuZhou's avatar
WenmuZhou committed
269
270
        rbf_norm = paddle.norm(P_diff, p=2, axis=2, keepdim=False)

WenmuZhou's avatar
WenmuZhou committed
271
        # rbf: n x F
WenmuZhou's avatar
WenmuZhou committed
272
273
        rbf = paddle.multiply(
            paddle.square(rbf_norm), paddle.log(rbf_norm + eps))
WenmuZhou's avatar
WenmuZhou committed
274
275
276
        P_hat = paddle.concat(
            [paddle.ones(
                (n, 1), dtype='float64'), P, rbf], axis=1)
WenmuZhou's avatar
WenmuZhou committed
277
278
279
        return P_hat  # n x F+3

    def get_expand_tensor(self, batch_C_prime):
WenmuZhou's avatar
WenmuZhou committed
280
281
        B, H, C = batch_C_prime.shape
        batch_C_prime = batch_C_prime.reshape([B, H * C])
WenmuZhou's avatar
WenmuZhou committed
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        batch_C_ex_part_tensor = self.fc(batch_C_prime)
        batch_C_ex_part_tensor = batch_C_ex_part_tensor.reshape([-1, 3, 2])
        return batch_C_ex_part_tensor


class TPS(nn.Layer):
    def __init__(self, in_channels, num_fiducial, loc_lr, model_name):
        super(TPS, self).__init__()
        self.loc_net = LocalizationNetwork(in_channels, num_fiducial, loc_lr,
                                           model_name)
        self.grid_generator = GridGenerator(self.loc_net.out_channels,
                                            num_fiducial)
        self.out_channels = in_channels

    def forward(self, image):
        image.stop_gradient = False
        batch_C_prime = self.loc_net(image)
WenmuZhou's avatar
WenmuZhou committed
299
        batch_P_prime = self.grid_generator(batch_C_prime, image.shape[2:])
WenmuZhou's avatar
WenmuZhou committed
300
301
302
303
        batch_P_prime = batch_P_prime.reshape(
            [-1, image.shape[2], image.shape[3], 2])
        batch_I_r = F.grid_sample(x=image, grid=batch_P_prime)
        return batch_I_r