stn.py 5.12 KB
Newer Older
tink2123's avatar
tink2123 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
tink2123's avatar
tink2123 committed
14
15
16
17
"""
This code is refer from:
https://github.com/ayumiymk/aster.pytorch/blob/master/lib/models/stn_head.py
"""
tink2123's avatar
tink2123 committed
18
19
20
21
22
23
24
25
26
27
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
from paddle import nn, ParamAttr
from paddle.nn import functional as F
import numpy as np

tink2123's avatar
tink2123 committed
28
29
from .tps_spatial_transformer import TPSSpatialTransformer

tink2123's avatar
tink2123 committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

def conv3x3_block(in_channels, out_channels, stride=1):
    n = 3 * 3 * out_channels
    w = math.sqrt(2. / n)
    conv_layer = nn.Conv2D(
        in_channels,
        out_channels,
        kernel_size=3,
        stride=stride,
        padding=1,
        weight_attr=nn.initializer.Normal(
            mean=0.0, std=w),
        bias_attr=nn.initializer.Constant(0))
    block = nn.Sequential(conv_layer, nn.BatchNorm2D(out_channels), nn.ReLU())
    return block


class STN(nn.Layer):
    def __init__(self, in_channels, num_ctrlpoints, activation='none'):
        super(STN, self).__init__()
        self.in_channels = in_channels
        self.num_ctrlpoints = num_ctrlpoints
        self.activation = activation
        self.stn_convnet = nn.Sequential(
            conv3x3_block(in_channels, 32),  #32x64
            nn.MaxPool2D(
                kernel_size=2, stride=2),
            conv3x3_block(32, 64),  #16x32
            nn.MaxPool2D(
                kernel_size=2, stride=2),
            conv3x3_block(64, 128),  # 8*16
            nn.MaxPool2D(
                kernel_size=2, stride=2),
            conv3x3_block(128, 256),  # 4*8
            nn.MaxPool2D(
                kernel_size=2, stride=2),
            conv3x3_block(256, 256),  # 2*4,
            nn.MaxPool2D(
                kernel_size=2, stride=2),
            conv3x3_block(256, 256))  # 1*2
        self.stn_fc1 = nn.Sequential(
            nn.Linear(
                2 * 256,
                512,
                weight_attr=nn.initializer.Normal(0, 0.001),
                bias_attr=nn.initializer.Constant(0)),
            nn.BatchNorm1D(512),
            nn.ReLU())
        fc2_bias = self.init_stn()
        self.stn_fc2 = nn.Linear(
            512,
            num_ctrlpoints * 2,
            weight_attr=nn.initializer.Constant(0.0),
            bias_attr=nn.initializer.Assign(fc2_bias))

    def init_stn(self):
        margin = 0.01
        sampling_num_per_side = int(self.num_ctrlpoints / 2)
        ctrl_pts_x = np.linspace(margin, 1. - margin, sampling_num_per_side)
        ctrl_pts_y_top = np.ones(sampling_num_per_side) * margin
        ctrl_pts_y_bottom = np.ones(sampling_num_per_side) * (1 - margin)
        ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
        ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
        ctrl_points = np.concatenate(
            [ctrl_pts_top, ctrl_pts_bottom], axis=0).astype(np.float32)
        if self.activation == 'none':
            pass
        elif self.activation == 'sigmoid':
            ctrl_points = -np.log(1. / ctrl_points - 1.)
        ctrl_points = paddle.to_tensor(ctrl_points)
        fc2_bias = paddle.reshape(
            ctrl_points, shape=[ctrl_points.shape[0] * ctrl_points.shape[1]])
        return fc2_bias

    def forward(self, x):
        x = self.stn_convnet(x)
        batch_size, _, h, w = x.shape
        x = paddle.reshape(x, shape=(batch_size, -1))
        img_feat = self.stn_fc1(x)
        x = self.stn_fc2(0.1 * img_feat)
        if self.activation == 'sigmoid':
            x = F.sigmoid(x)
        x = paddle.reshape(x, shape=[-1, self.num_ctrlpoints, 2])
        return img_feat, x
tink2123's avatar
tink2123 committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130


class STN_ON(nn.Layer):
    def __init__(self, in_channels, tps_inputsize, tps_outputsize,
                 num_control_points, tps_margins, stn_activation):
        super(STN_ON, self).__init__()
        self.tps = TPSSpatialTransformer(
            output_image_size=tuple(tps_outputsize),
            num_control_points=num_control_points,
            margins=tuple(tps_margins))
        self.stn_head = STN(in_channels=in_channels,
                            num_ctrlpoints=num_control_points,
                            activation=stn_activation)
        self.tps_inputsize = tps_inputsize
        self.out_channels = in_channels

    def forward(self, image):
Topdu's avatar
Topdu committed
131
132
        if len(image.shape)==5:
            image = image.reshape([0, image.shape[-3], image.shape[-2], image.shape[-1]])
tink2123's avatar
tink2123 committed
133
134
135
136
137
        stn_input = paddle.nn.functional.interpolate(
            image, self.tps_inputsize, mode="bilinear", align_corners=True)
        stn_img_feat, ctrl_points = self.stn_head(stn_input)
        x, _ = self.tps(image, ctrl_points)
        return x