"example/39_permute/CMakeLists.txt" did not exist on "7c788e10ce9ddf8e821620fcfda84fbef10d8897"
paddleocr.py 9.16 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys

__dir__ = os.path.dirname(__file__)
sys.path.append(os.path.join(__dir__, ''))

import cv2
import numpy as np
from pathlib import Path
import tarfile
import requests
from tqdm import tqdm

from tools.infer import predict_system
from ppocr.utils.utility import initial_logger

logger = initial_logger()
from ppocr.utils.utility import check_and_read_gif

__all__ = ['PaddleOCR']

model_params = {
    'ch_det_mv3_db': {
        'url':
        'https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar',
        'algorithm': 'DB',
    },
    'ch_rec_mv3_crnn_enhance': {
        'url':
        'https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar',
        'algorithm': 'CRNN'
    },
}

SUPPORT_DET_MODEL = ['DB']
SUPPORT_REC_MODEL = ['Rosetta', 'CRNN', 'STARNet', 'RARE']


def download_with_progressbar(url, save_path):
    response = requests.get(url, stream=True)
    total_size_in_bytes = int(response.headers.get('content-length', 0))
    block_size = 1024  # 1 Kibibyte
    progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
    with open(save_path, 'wb') as file:
        for data in response.iter_content(block_size):
            progress_bar.update(len(data))
            file.write(data)
    progress_bar.close()
    if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes:
        logger.error("ERROR, something went wrong")
        sys.exit(0)


def download_and_unzip(url, model_storage_directory):
    tmp_path = os.path.join(model_storage_directory, url.split('/')[-1])
    print('download {} to {}'.format(url, tmp_path))
    os.makedirs(model_storage_directory, exist_ok=True)
    download_with_progressbar(url, tmp_path)
    with tarfile.open(tmp_path, 'r') as tarObj:
        for filename in tarObj.getnames():
            tarObj.extract(filename, model_storage_directory)
    os.remove(tmp_path)


def maybe_download(model_storage_directory, model_name, mode='det'):
    algorithm = None
    # using custom model
    if os.path.exists(os.path.join(model_name, 'model')) and os.path.exists(
            os.path.join(model_name, 'params')):
        return model_name, algorithm
    # using the model of paddleocr
    model_path = os.path.join(model_storage_directory, model_name)
    if not os.path.exists(os.path.join(model_path,
                                       'model')) or not os.path.exists(
                                           os.path.join(model_path, 'params')):
        assert model_name in model_params, 'model must in {}'.format(
            model_params.keys())
        download_and_unzip(model_params[model_name]['url'],
                           model_storage_directory)
        algorithm = model_params[model_name]['algorithm']
    return model_path, algorithm


def parse_args():
    import argparse

    def str2bool(v):
        return v.lower() in ("true", "t", "1")

    parser = argparse.ArgumentParser()
    # params for prediction engine
    parser.add_argument("--use_gpu", type=str2bool, default=True)
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
    parser.add_argument("--gpu_mem", type=int, default=8000)

    # params for text detector
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_name", type=str, default='ch_det_mv3_db')
    parser.add_argument("--det_max_side_len", type=float, default=960)

    # DB parmas
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
    parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=2.0)

    # EAST parmas
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

    # params for text recognizer
    parser.add_argument("--rec_algorithm", type=str, default='CRNN')
    parser.add_argument(
        "--rec_model_name", type=str, default='ch_rec_mv3_crnn_enhance')
    parser.add_argument("--rec_image_shape", type=str, default="3, 32, 320")
    parser.add_argument("--rec_char_type", type=str, default='ch')
    parser.add_argument("--rec_batch_num", type=int, default=30)
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
    parser.add_argument("--use_space_char", type=bool, default=True)
    parser.add_argument("--enable_mkldnn", type=bool, default=False)

    parser.add_argument("--model_storage_directory", type=str, default=False)
    parser.add_argument("--det", type=str2bool, default=True)
    parser.add_argument("--rec", type=str2bool, default=True)
    return parser.parse_args()


class PaddleOCR(predict_system.TextSystem):
    def __init__(self,
                 det_model_name='ch_det_mv3_db',
                 rec_model_name='ch_rec_mv3_crnn_enhance',
                 model_storage_directory=None,
                 log_level=20,
                 **kwargs):
        """
        paddleocr package
        args:
            det_model_name: det_model name, keep same with filename in paddleocr. default is ch_det_mv3_db
            det_model_name: rec_model name, keep same with filename in paddleocr. default is ch_rec_mv3_crnn_enhance
            model_storage_directory: model save path. default is ~/.paddleocr
                                    det model will save to  model_storage_directory/det_model
                                    rec model will save to  model_storage_directory/rec_model
            log_level:
            **kwargs: other params show in paddleocr --help
        """
        logger.setLevel(log_level)
        postprocess_params = parse_args()
        # init model dir
        if model_storage_directory:
            self.model_storage_directory = model_storage_directory
        else:
            self.model_storage_directory = os.path.expanduser(
                "~/.paddleocr/") + '/model'
        Path(self.model_storage_directory).mkdir(parents=True, exist_ok=True)

        # download model
        det_model_path, det_algorithm = maybe_download(
            self.model_storage_directory, det_model_name, 'det')
        rec_model_path, rec_algorithm = maybe_download(
            self.model_storage_directory, rec_model_name, 'rec')
        # update model and post_process params
        postprocess_params.__dict__.update(**kwargs)
        postprocess_params.det_model_dir = det_model_path
        postprocess_params.rec_model_dir = rec_model_path
        if det_algorithm is not None:
            postprocess_params.det_algorithm = det_algorithm
        if rec_algorithm is not None:
            postprocess_params.rec_algorithm = rec_algorithm

        if postprocess_params.det_algorithm not in SUPPORT_DET_MODEL:
            logger.error('det_algorithm must in {}'.format(SUPPORT_DET_MODEL))
            sys.exit(0)
        if postprocess_params.rec_algorithm not in SUPPORT_REC_MODEL:
            logger.error('rec_algorithm must in {}'.format(SUPPORT_REC_MODEL))
            sys.exit(0)

        postprocess_params.rec_char_dict_path = Path(
            __file__).parent / postprocess_params.rec_char_dict_path

        # init det_model and rec_model
        super().__init__(postprocess_params)

    def ocr(self, img, det=True, rec=True):
        """
        ocr with paddleocr
        args:
            img: img for ocr, support ndarray, img_path and list or ndarray
            det: use text detection or not, if false, only rec will be exec. default is True
            rec: use text recognition or not, if false, only det will be exec. default is True
        """
        assert isinstance(img, (np.ndarray, list, str))
        if isinstance(img, str):
            image_file = img
            img, flag = check_and_read_gif(image_file)
            if not flag:
                img = cv2.imread(image_file)
            if img is None:
                logger.error("error in loading image:{}".format(image_file))
                return None
        if det and rec:
            dt_boxes, rec_res = self.__call__(img)
            return [[box.tolist(), res] for box, res in zip(dt_boxes, rec_res)]
        elif det and not rec:
            dt_boxes, elapse = self.text_detector(img)
            if dt_boxes is None:
                return None
            return [box.tolist() for box in dt_boxes]
        else:
            if not isinstance(img, list):
                img = [img]
            rec_res, elapse = self.text_recognizer(img)
            return rec_res