east_postprocess.py 4.86 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
from .locality_aware_nms import nms_locality
import cv2

23
24
25
26
27
28
29
import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '..'))
import lanms

LDOUBLEV's avatar
LDOUBLEV committed
30
31
32
33
34
35
36
37
38
39

class EASTPostPocess(object):
    """
    The post process for EAST.
    """

    def __init__(self, params):
        self.score_thresh = params['score_thresh']
        self.cover_thresh = params['cover_thresh']
        self.nms_thresh = params['nms_thresh']
40
41
42
43
44
        
        # c++ la-nms is faster, but only support python 3.5
        self.is_python35 = False
        if sys.version_info.major == 3 and sys.version_info.minor == 5:
            self.is_python35 = True
LDOUBLEV's avatar
LDOUBLEV committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

    def restore_rectangle_quad(self, origin, geometry):
        """
        Restore rectangle from quadrangle.
        """
        # quad
        origin_concat = np.concatenate(
            (origin, origin, origin, origin), axis=1)  # (n, 8)
        pred_quads = origin_concat - geometry
        pred_quads = pred_quads.reshape((-1, 4, 2))  # (n, 4, 2)
        return pred_quads

    def detect(self,
               score_map,
               geo_map,
               score_thresh=0.8,
               cover_thresh=0.1,
               nms_thresh=0.2):
        """
        restore text boxes from score map and geo map
        """
        score_map = score_map[0]
        geo_map = np.swapaxes(geo_map, 1, 0)
        geo_map = np.swapaxes(geo_map, 1, 2)
        # filter the score map
        xy_text = np.argwhere(score_map > score_thresh)
        if len(xy_text) == 0:
            return []
        # sort the text boxes via the y axis
        xy_text = xy_text[np.argsort(xy_text[:, 0])]
        #restore quad proposals
        text_box_restored = self.restore_rectangle_quad(
            xy_text[:, ::-1] * 4, geo_map[xy_text[:, 0], xy_text[:, 1], :])
        boxes = np.zeros((text_box_restored.shape[0], 9), dtype=np.float32)
        boxes[:, :8] = text_box_restored.reshape((-1, 8))
        boxes[:, 8] = score_map[xy_text[:, 0], xy_text[:, 1]]
81
82
83
84
        if self.is_python35:
            boxes = lanms.merge_quadrangle_n9(boxes, nms_thresh)
        else:
            boxes = nms_locality(boxes.astype(np.float64), nms_thresh)
LDOUBLEV's avatar
LDOUBLEV committed
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
        if boxes.shape[0] == 0:
            return []
        # Here we filter some low score boxes by the average score map, 
        #   this is different from the orginal paper.
        for i, box in enumerate(boxes):
            mask = np.zeros_like(score_map, dtype=np.uint8)
            cv2.fillPoly(mask, box[:8].reshape(
                (-1, 4, 2)).astype(np.int32) // 4, 1)
            boxes[i, 8] = cv2.mean(score_map, mask)[0]
        boxes = boxes[boxes[:, 8] > cover_thresh]
        return boxes

    def sort_poly(self, p):
        """
        Sort polygons.
        """
        min_axis = np.argmin(np.sum(p, axis=1))
        p = p[[min_axis, (min_axis + 1) % 4,\
            (min_axis + 2) % 4, (min_axis + 3) % 4]]
        if abs(p[0, 0] - p[1, 0]) > abs(p[0, 1] - p[1, 1]):
            return p
        else:
            return p[[0, 3, 2, 1]]

    def __call__(self, outs_dict, ratio_list):
        score_list = outs_dict['f_score']
        geo_list = outs_dict['f_geo']
        img_num = len(ratio_list)
        dt_boxes_list = []
        for ino in range(img_num):
            score = score_list[ino]
            geo = geo_list[ino]
            boxes = self.detect(
                score_map=score,
                geo_map=geo,
                score_thresh=self.score_thresh,
                cover_thresh=self.cover_thresh,
                nms_thresh=self.nms_thresh)
            boxes_norm = []
            if len(boxes) > 0:
                ratio_h, ratio_w = ratio_list[ino]
                boxes = boxes[:, :8].reshape((-1, 4, 2))
                boxes[:, :, 0] /= ratio_w
                boxes[:, :, 1] /= ratio_h
                for i_box, box in enumerate(boxes):
                    box = self.sort_poly(box.astype(np.int32))
                    if np.linalg.norm(box[0] - box[1]) < 5 \
                        or np.linalg.norm(box[3] - box[0]) < 5:
                        continue
                    boxes_norm.append(box)
            dt_boxes_list.append(np.array(boxes_norm))
        return dt_boxes_list