README_ch.md 9.64 KB
Newer Older
grasswolfs's avatar
grasswolfs committed
1
[English](README.md) | 简体中文
WenmuZhou's avatar
WenmuZhou committed
2

grasswolfs's avatar
grasswolfs committed
3
# PP-Structure
WenmuZhou's avatar
WenmuZhou committed
4

grasswolfs's avatar
grasswolfs committed
5
6
7
8
9
10
PP-Structure是一个可用于复杂文档结构分析和处理的OCR工具包,主要特性如下:
- 支持对图片形式的文档进行版面分析,可以划分**文字、标题、表格、图片以及列表**5类区域(与Layout-Parser联合使用)
- 支持文字、标题、图片以及列表区域提取为文字字段(与PP-OCR联合使用)
- 支持表格区域进行结构化分析,最终结果输出Excel文件
- 支持python whl包和命令行两种方式,简单易用
- 支持版面分析和表格结构化两类任务自定义训练
WenmuZhou's avatar
WenmuZhou committed
11

grasswolfs's avatar
grasswolfs committed
12
## 1. 效果展示
WenmuZhou's avatar
WenmuZhou committed
13

grasswolfs's avatar
grasswolfs committed
14
<img src="../doc/table/ppstructure.GIF" width="100%"/>
15
16
17



grasswolfs's avatar
grasswolfs committed
18
## 2. 安装
19

grasswolfs's avatar
grasswolfs committed
20
### 2.1 安装依赖
21

grasswolfs's avatar
grasswolfs committed
22
- **(1) 安装PaddlePaddle**
23
24

```bash
grasswolfs's avatar
grasswolfs committed
25
pip3 install --upgrade pip
26

grasswolfs's avatar
grasswolfs committed
27
# GPU安装
Daniel Yang's avatar
Daniel Yang committed
28
python3 -m pip install paddlepaddle-gpu==2.1.1 -i https://mirror.baidu.com/pypi/simple
29

grasswolfs's avatar
grasswolfs committed
30
# CPU安装
Daniel Yang's avatar
Daniel Yang committed
31
 python3 -m pip install paddlepaddle==2.1.1 -i https://mirror.baidu.com/pypi/simple
32
33

```
34
更多需求,请参照[安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。
35

grasswolfs's avatar
grasswolfs committed
36
- **(2) 安装 Layout-Parser**
WenmuZhou's avatar
WenmuZhou committed
37

38
```bash
WenmuZhou's avatar
WenmuZhou committed
39
pip3 install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
40
41
```

grasswolfs's avatar
grasswolfs committed
42
43
44
45
### 2.2 安装PaddleOCR(包含PP-OCR和PP-Structure)

- **(1) PIP快速安装PaddleOCR whl包(仅预测)**

46
```bash
Daniel Yang's avatar
Daniel Yang committed
47
pip install "paddleocr>=2.2" # 推荐使用2.2+版本
48
```
WenmuZhou's avatar
WenmuZhou committed
49

grasswolfs's avatar
grasswolfs committed
50
51
52
53
54
55
56
57
58
- **(2) 完整克隆PaddleOCR源码(预测+训练)**

```bash
【推荐】git clone https://github.com/PaddlePaddle/PaddleOCR

#如果因为网络问题无法pull成功,也可选择使用码云上的托管:
git clone https://gitee.com/paddlepaddle/PaddleOCR

#注:码云托管代码可能无法实时同步本github项目更新,存在3~5天延时,请优先使用推荐方式。
WenmuZhou's avatar
opt doc  
WenmuZhou committed
59
```
WenmuZhou's avatar
WenmuZhou committed
60
61


MissPenguin's avatar
MissPenguin committed
62
## 3. PP-Structure 快速开始
grasswolfs's avatar
grasswolfs committed
63
64

### 3.1 命令行使用(默认参数,极简)
WenmuZhou's avatar
WenmuZhou committed
65

WenmuZhou's avatar
opt doc  
WenmuZhou committed
66
```bash
WenmuZhou's avatar
WenmuZhou committed
67
paddleocr --image_dir=../doc/table/1.png --type=structure
WenmuZhou's avatar
opt doc  
WenmuZhou committed
68
69
```

grasswolfs's avatar
grasswolfs committed
70
### 3.2 Python脚本使用(自定义参数,灵活)
WenmuZhou's avatar
WenmuZhou committed
71
72

```python
WenmuZhou's avatar
WenmuZhou committed
73
import os
WenmuZhou's avatar
WenmuZhou committed
74
import cv2
WenmuZhou's avatar
WenmuZhou committed
75
from paddleocr import PPStructure,draw_structure_result,save_structure_res
WenmuZhou's avatar
WenmuZhou committed
76

WenmuZhou's avatar
WenmuZhou committed
77
table_engine = PPStructure(show_log=True)
WenmuZhou's avatar
WenmuZhou committed
78

WenmuZhou's avatar
WenmuZhou committed
79
save_folder = './output/table'
WenmuZhou's avatar
WenmuZhou committed
80
81
82
img_path = '../doc/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
WenmuZhou's avatar
WenmuZhou committed
83
save_structure_res(result, save_folder,os.path.basename(img_path).split('.')[0])
WenmuZhou's avatar
WenmuZhou committed
84

WenmuZhou's avatar
WenmuZhou committed
85
for line in result:
WenmuZhou's avatar
WenmuZhou committed
86
    line.pop('img')
WenmuZhou's avatar
WenmuZhou committed
87
88
89
90
    print(line)

from PIL import Image

WenmuZhou's avatar
opt doc  
WenmuZhou committed
91
font_path = '../doc/fonts/simfang.ttf' # PaddleOCR下提供字体包
WenmuZhou's avatar
WenmuZhou committed
92
image = Image.open(img_path).convert('RGB')
WenmuZhou's avatar
WenmuZhou committed
93
im_show = draw_structure_result(image, result,font_path=font_path)
WenmuZhou's avatar
WenmuZhou committed
94
95
96
97
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```

grasswolfs's avatar
grasswolfs committed
98
### 3.3 返回结果说明
MissPenguin's avatar
MissPenguin committed
99
PP-Structure的返回结果为一个dict组成的list,示例如下
WenmuZhou's avatar
WenmuZhou committed
100
101
102

```shell
[
grasswolfs's avatar
grasswolfs committed
103
104
105
  {   'type': 'Text',
      'bbox': [34, 432, 345, 462],
      'res': ([[36.0, 437.0, 341.0, 437.0, 341.0, 446.0, 36.0, 447.0], [41.0, 454.0, 125.0, 453.0, 125.0, 459.0, 41.0, 460.0]],
WenmuZhou's avatar
WenmuZhou committed
106
107
108
109
110
111
                [('Tigure-6. The performance of CNN and IPT models using difforen', 0.90060663), ('Tent  ', 0.465441)])
  }
]
```
dict 里各个字段说明如下

grasswolfs's avatar
grasswolfs committed
112
| 字段            | 说明           |
WenmuZhou's avatar
WenmuZhou committed
113
114
115
116
117
| --------------- | -------------|
|type|图片区域的类型|
|bbox|图片区域的在原图的坐标,分别[左上角x,左上角y,右下角x,右下角y]|
|res|图片区域的OCR或表格识别结果。<br> 表格: 表格的HTML字符串; <br> OCR: 一个包含各个单行文字的检测坐标和识别结果的元组|

WenmuZhou's avatar
WenmuZhou committed
118

grasswolfs's avatar
grasswolfs committed
119
### 3.4 参数说明
WenmuZhou's avatar
opt doc  
WenmuZhou committed
120
121
122
123
124
125
126
127

| 字段            | 说明                                     | 默认值                                      |
| --------------- | ---------------------------------------- | ------------------------------------------- |
| output          | excel和识别结果保存的地址                | ./output/table                              |
| table_max_len   | 表格结构模型预测时,图像的长边resize尺度 | 488                                         |
| table_model_dir | 表格结构模型 inference 模型地址          | None                                        |
| table_char_type | 表格结构模型所用字典地址                 | ../ppocr/utils/dict/table_structure_dict.tx |

WenmuZhou's avatar
WenmuZhou committed
128
129
大部分参数和paddleocr whl包保持一致,见 [whl包文档](../doc/doc_ch/whl.md)

WenmuZhou's avatar
WenmuZhou committed
130
运行完成后,每张图片会在`output`字段指定的目录下有一个同名目录,图片里的每个表格会存储为一个excel,图片区域会被裁剪之后保存下来,excel文件和图片名名为表格在图片里的坐标。
WenmuZhou's avatar
opt doc  
WenmuZhou committed
131
132


grasswolfs's avatar
grasswolfs committed
133
## 4. PP-Structure Pipeline介绍
WenmuZhou's avatar
opt doc  
WenmuZhou committed
134
135
136

![pipeline](../doc/table/pipeline.jpg)

grasswolfs's avatar
grasswolfs committed
137
在PP-Structure中,图片会先经由Layout-Parser进行版面分析,在版面分析中,会对图片里的区域进行分类,包括**文字、标题、图片、列表和表格**5类。对于前4类区域,直接使用PP-OCR完成对应区域文字检测与识别。对于表格类区域,经过表格结构化处理后,表格图片转换为相同表格样式的Excel文件。
WenmuZhou's avatar
opt doc  
WenmuZhou committed
138

grasswolfs's avatar
grasswolfs committed
139
### 4.1 版面分析
WenmuZhou's avatar
opt doc  
WenmuZhou committed
140

grasswolfs's avatar
grasswolfs committed
141
版面分析对文档数据进行区域分类,其中包括版面分析工具的Python脚本使用、提取指定类别检测框、性能指标以及自定义训练版面分析模型,详细内容可以参考[文档](layout/README_ch.md)
WenmuZhou's avatar
opt doc  
WenmuZhou committed
142

MissPenguin's avatar
MissPenguin committed
143
### 4.2 表格识别
WenmuZhou's avatar
opt doc  
WenmuZhou committed
144

MissPenguin's avatar
MissPenguin committed
145
表格识别将表格图片转换为excel文档,其中包含对于表格文本的检测和识别以及对于表格结构和单元格坐标的预测,详细说明参考[文档](table/README_ch.md)
WenmuZhou's avatar
opt doc  
WenmuZhou committed
146

grasswolfs's avatar
grasswolfs committed
147
## 5. 预测引擎推理(与whl包效果相同)
WenmuZhou's avatar
opt doc  
WenmuZhou committed
148
149
150
151

使用如下命令即可完成预测引擎的推理

```python
152
cd ppstructure
WenmuZhou's avatar
WenmuZhou committed
153
154
155
156
157
158
159
160
161
162
163

# 下载模型
mkdir inference && cd inference
# 下载超轻量级中文OCR模型的检测模型并解压
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar && tar xf ch_ppocr_mobile_v2.0_det_infer.tar
# 下载超轻量级中文OCR模型的识别模型并解压
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar && tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
# 下载超轻量级英文表格英寸模型并解压
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar
cd ..

164
python3 predict_system.py --det_model_dir=inference/ch_ppocr_mobile_v2.0_det_infer --rec_model_dir=inference/ch_ppocr_mobile_v2.0_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=ch --output=../output/table --vis_font_path=../doc/fonts/simfang.ttf
WenmuZhou's avatar
opt doc  
WenmuZhou committed
165
```
WenmuZhou's avatar
WenmuZhou committed
166
运行完成后,每张图片会在`output`字段指定的目录下有一个同名目录,图片里的每个表格会存储为一个excel,图片区域会被裁剪之后保存下来,excel文件和图片名名为表格在图片里的坐标。
WenmuZhou's avatar
opt doc  
WenmuZhou committed
167

WenmuZhou's avatar
WenmuZhou committed
168
**Model List**
WenmuZhou's avatar
WenmuZhou committed
169

170
171
172
173
174
175
176
177
178
179
180
181
LayoutParser 模型

|模型名称|模型简介|下载地址|
| --- | --- | --- |
| ppyolov2_r50vd_dcn_365e_publaynet | PubLayNet 数据集训练的版面分析模型,可以划分**文字、标题、表格、图片以及列表**5类区域 | [PubLayNet](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_publaynet.tar) |
| ppyolov2_r50vd_dcn_365e_tableBank_word | TableBank Word 数据集训练的版面分析模型,只能检测表格 | [TableBank Word](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_tableBank_word.tar) |
| ppyolov2_r50vd_dcn_365e_tableBank_latex | TableBank Latex 数据集训练的版面分析模型,只能检测表格 | [TableBank Latex](https://paddle-model-ecology.bj.bcebos.com/model/layout-parser/ppyolov2_r50vd_dcn_365e_tableBank_latex.tar) |

OCR和表格识别模型

|模型名称|模型简介|推理模型大小|下载地址|
| --- | --- | --- | --- |
WenmuZhou's avatar
WenmuZhou committed
182
183
184
185
186
|ch_ppocr_mobile_slim_v2.0_det|slim裁剪版超轻量模型,支持中英文、多语种文本检测|2.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_infer.tar) |
|ch_ppocr_mobile_slim_v2.0_rec|slim裁剪量化版超轻量模型,支持中英文、数字识别|6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_train.tar) |
|en_ppocr_mobile_v2.0_table_det|PubLayNet数据集训练的英文表格场景的文字检测|4.7M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_det_train.tar) |
|en_ppocr_mobile_v2.0_table_rec|PubLayNet数据集训练的英文表格场景的文字识别|6.9M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_rec_train.tar) |
|en_ppocr_mobile_v2.0_table_structure|PubLayNet数据集训练的英文表格场景的表格结构预测|18.6M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.1/table/en_ppocr_mobile_v2.0_table_structure_train.tar) |
187
188

如需要使用其他模型,可以在 [model_list](../doc/doc_ch/models_list.md) 下载模型或者使用自己训练好的模型配置到`det_model_dir`,`rec_model_dir`,`table_model_dir`三个字段即可。