".github/git@developer.sourcefind.cn:zhaoyu6/sglang.git" did not exist on "7c0db3a6c5d0454e28350d019f323cc1f420467b"
export_model.py 4.43 KB
Newer Older
dyning's avatar
dyning committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
16
17
18
19
import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
20
sys.path.append(os.path.abspath(os.path.join(__dir__, "..")))
21

dyning's avatar
dyning committed
22
23
24
25
26
27
28
29
import argparse

import paddle
from paddle.jit import to_static

from ppocr.modeling.architectures import build_model
from ppocr.postprocess import build_post_process
from ppocr.utils.save_load import init_model
30
from ppocr.utils.logging import get_logger
WenmuZhou's avatar
WenmuZhou committed
31
from tools.program import load_config, merge_config, ArgsParser
dyning's avatar
dyning committed
32
33


34
35
36
def export_single_model(model, arch_config, save_path, logger):
    if arch_config["algorithm"] == "SRN":
        max_text_length = arch_config["Head"]["max_text_length"]
tink2123's avatar
tink2123 committed
37
        other_shape = [
tink2123's avatar
tink2123 committed
38
            paddle.static.InputSpec(
39
                shape=[None, 1, 64, 256], dtype="float32"), [
tink2123's avatar
tink2123 committed
40
41
42
                    paddle.static.InputSpec(
                        shape=[None, 256, 1],
                        dtype="int64"), paddle.static.InputSpec(
43
                            shape=[None, max_text_length, 1], dtype="int64"),
tink2123's avatar
tink2123 committed
44
                    paddle.static.InputSpec(
45
46
47
48
                        shape=[None, 8, max_text_length, max_text_length],
                        dtype="int64"), paddle.static.InputSpec(
                            shape=[None, 8, max_text_length, max_text_length],
                            dtype="int64")
tink2123's avatar
tink2123 committed
49
50
51
52
                ]
        ]
        model = to_static(model, input_spec=other_shape)
    else:
53
        infer_shape = [3, -1, -1]
54
        if arch_config["model_type"] == "rec":
55
            infer_shape = [3, 32, -1]  # for rec model, H must be 32
56
57
58
            if "Transform" in arch_config and arch_config[
                    "Transform"] is not None and arch_config["Transform"][
                        "name"] == "TPS":
59
                logger.info(
60
                    "When there is tps in the network, variable length input is not supported, and the input size needs to be the same as during training"
61
62
                )
                infer_shape[-1] = 100
63

tink2123's avatar
tink2123 committed
64
65
66
67
        model = to_static(
            model,
            input_spec=[
                paddle.static.InputSpec(
68
                    shape=[None] + infer_shape, dtype="float32")
tink2123's avatar
tink2123 committed
69
70
            ])

71
    paddle.jit.save(model, save_path)
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    logger.info("inference model is saved to {}".format(save_path))
    return


def main():
    FLAGS = ArgsParser().parse_args()
    config = load_config(FLAGS.config)
    merge_config(FLAGS.opt)
    logger = get_logger()
    # build post process

    post_process_class = build_post_process(config["PostProcess"],
                                            config["Global"])

    # build model
    # for rec algorithm
    if hasattr(post_process_class, "character"):
        char_num = len(getattr(post_process_class, "character"))
        if config["Architecture"]["algorithm"] in ["Distillation",
                                                   ]:  # distillation model
            for key in config["Architecture"]["Models"]:
                config["Architecture"]["Models"][key]["Head"][
                    "out_channels"] = char_num
        else:  # base rec model
            config["Architecture"]["Head"]["out_channels"] = char_num
    model = build_model(config["Architecture"])
    init_model(config, model, logger)
    model.eval()

    save_path = config["Global"]["save_inference_dir"]

    arch_config = config["Architecture"]

    if arch_config["algorithm"] in ["Distillation", ]:  # distillation model
        archs = list(arch_config["Models"].values())
        for idx, name in enumerate(model.model_name_list):
            sub_model_save_path = os.path.join(save_path, name, "inference")
            export_single_model(model.model_list[idx], archs[idx],
                                sub_model_save_path, logger)
    else:
        save_path = os.path.join(save_path, "inference")
        export_single_model(model, arch_config, save_path, logger)
dyning's avatar
dyning committed
114
115
116
117


if __name__ == "__main__":
    main()