README.md 7.01 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
English | [简体中文](README_ch.md)
weishengyu's avatar
weishengyu committed
2

littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
3
4
## Style Text

littletomatodonkey's avatar
littletomatodonkey committed
5
6
7
### Contents
- [1. Introduction](#Introduction)
- [2. Preparation](#Preparation)
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
8
9
- [3. Quick Start](#Quick_Start)
- [4. Applications](#Applications)
littletomatodonkey's avatar
littletomatodonkey committed
10
- [5. Code Structure](#Code_structure)
weishengyu's avatar
weishengyu committed
11
12


littletomatodonkey's avatar
littletomatodonkey committed
13
14
<a name="Introduction"></a>
### Introduction
weishengyu's avatar
weishengyu committed
15

littletomatodonkey's avatar
littletomatodonkey committed
16
17
18
19
20
<div align="center">
    <img src="doc/images/3.png" width="800">
</div>

<div align="center">
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
21
    <img src="doc/images/9.png" width="600">
littletomatodonkey's avatar
littletomatodonkey committed
22
23
24
25
26
27
28
29
30
31
</div>


The Style-Text data synthesis tool is a tool based on Baidu's self-developed text editing algorithm "Editing Text in the Wild" [https://arxiv.org/abs/1908.03047](https://arxiv.org/abs/1908.03047).

Different from the commonly used GAN-based data synthesis tools, the main framework of Style-Text includes:
* (1) Text foreground style transfer module.
* (2) Background extraction module.
* (3) Fusion module.

littletomatodonkey's avatar
littletomatodonkey committed
32
After these three steps, you can quickly realize the image text style transfer. The following figure is some results of the data synthesis tool.
littletomatodonkey's avatar
littletomatodonkey committed
33
34

<div align="center">
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
35
    <img src="doc/images/10.png" width="1000">
littletomatodonkey's avatar
littletomatodonkey committed
36
37
38
39
</div>


<a name="Preparation"></a>
weishengyu's avatar
weishengyu committed
40
41
#### Preparation

weishengyu's avatar
weishengyu committed
42
1. Please refer the [QUICK INSTALLATION](../doc/doc_en/installation_en.md) to install PaddlePaddle. Python3 environment is strongly recommended.
weishengyu's avatar
weishengyu committed
43
44
45
2. Download the pretrained models and unzip:

```bash
littletomatodonkey's avatar
littletomatodonkey committed
46
47
cd StyleText
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/style_text/style_text_models.zip
weishengyu's avatar
weishengyu committed
48
49
50
unzip style_text_models.zip
```

littletomatodonkey's avatar
littletomatodonkey committed
51
If you save the model in another location, please modify the address of the model file in `configs/config.yml`, and you need to modify these three configurations at the same time:
weishengyu's avatar
weishengyu committed
52
53
54
55
56
57
58
59
60
61
62
63

```
bg_generator:
  pretrain: style_text_rec/bg_generator
...
text_generator:
  pretrain: style_text_models/text_generator
...
fusion_generator:
  pretrain: style_text_models/fusion_generator
```

littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
64
65
<a name="Quick_Start"></a>
### Quick Start
weishengyu's avatar
weishengyu committed
66

littletomatodonkey's avatar
littletomatodonkey committed
67
#### Synthesis single image
weishengyu's avatar
weishengyu committed
68

littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
69
1. You can run `tools/synth_image` and generate the demo image, which is saved in the current folder.
weishengyu's avatar
weishengyu committed
70

littletomatodonkey's avatar
littletomatodonkey committed
71
```python
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
72
python3 -m tools.synth_image -c configs/config.yml --style_image examples/style_images/2.jpg --text_corpus PaddleOCR --language en
weishengyu's avatar
weishengyu committed
73
74
```

littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
* Note: The language options is correspond to the corpus. Currently, the tool only supports English, Simplified Chinese and Korean.

For example, enter the following image and corpus `PaddleOCR`.

<div align="center">
    <img src="examples/style_images/2.jpg" width="300">
</div>

The result `fake_fusion.jpg` will be generated.

<div align="center">
    <img src="doc/images/4.jpg" width="300">
</div>

What's more, the medium result `fake_bg.jpg` will also be saved, which is the background output.

<div align="center">
    <img src="doc/images/7.jpg" width="300">
</div>


`fake_text.jpg` * `fake_text.jpg` is the generated image with the same font style as `Style Input`.
weishengyu's avatar
weishengyu committed
97
98


littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
99
100
101
<div align="center">
    <img src="doc/images/8.jpg" width="300">
</div>
weishengyu's avatar
weishengyu committed
102
103


littletomatodonkey's avatar
littletomatodonkey committed
104
#### Batch synthesis
weishengyu's avatar
weishengyu committed
105

littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
106
In actual application scenarios, it is often necessary to synthesize pictures in batches and add them to the training set. StyleText can use a batch of style pictures and corpus to synthesize data in batches. The synthesis process is as follows:
weishengyu's avatar
weishengyu committed
107
108

1. The referenced dataset can be specifed in `configs/dataset_config.yml`:
littletomatodonkey's avatar
littletomatodonkey committed
109

littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
110
111
112
113
114
115
116
117
118
   * `Global`
     * `output_dir:`:Output synthesis data path.
   * `StyleSampler`
     * `image_home`:style images' folder.
     * `label_file`:Style images' file list. If label is provided, then it is the label file path.
     * `with_label`:Whether the `label_file` is label file list.
   * `CorpusGenerator`
     * `method`:Method of CorpusGenerator,supports `FileCorpus` and `EnNumCorpus`. If `EnNumCorpus` is used,No other configuration is needed,otherwise you need to set `corpus_file` and `language`.
     * `language`:Language of the corpus.
Wei Shengyu's avatar
Wei Shengyu committed
119
     * `corpus_file`: Filepath of the corpus. Corpus file should be a text file which will be split by line-endings('\n'). Corpus generator samples one line each time.
Wei Shengyu's avatar
Wei Shengyu committed
120
121
122


Example of corpus file: 
Wei Shengyu's avatar
Wei Shengyu committed
123
124
125
```
PaddleOCR
飞桨文字识别
Wei Shengyu's avatar
Wei Shengyu committed
126
127
StyleText
风格文本图像数据合成
Wei Shengyu's avatar
Wei Shengyu committed
128
```
weishengyu's avatar
weishengyu committed
129

littletomatodonkey's avatar
littletomatodonkey committed
130
We provide a general dataset containing Chinese, English and Korean (50,000 images in all) for your trial ([download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/style_text/chkoen_5w.tar)), some examples are given below :
littletomatodonkey's avatar
littletomatodonkey committed
131
132
133
134
135

<div align="center">
     <img src="doc/images/5.png" width="800">
</div>

weishengyu's avatar
weishengyu committed
136
137
138
139
140
141
2. You can run the following command to start synthesis task:

   ``` bash
   python -m tools.synth_dataset.py -c configs/dataset_config.yml
   ```

littletomatodonkey's avatar
littletomatodonkey committed
142

littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
143
144
<a name="Applications"></a>
### Applications
littletomatodonkey's avatar
littletomatodonkey committed
145
146
147
We take two scenes as examples, which are metal surface English number recognition and general Korean recognition, to illustrate practical cases of using StyleText to synthesize data to improve text recognition. The following figure shows some examples of real scene images and composite images:

<div align="center">
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
148
    <img src="doc/images/11.png" width="800">
littletomatodonkey's avatar
littletomatodonkey committed
149
150
151
152
153
</div>


After adding the above synthetic data for training, the accuracy of the recognition model is improved, which is shown in the following table:

littletomatodonkey's avatar
littletomatodonkey committed
154

littletomatodonkey's avatar
littletomatodonkey committed
155
| Scenario | Characters | Raw Data | Test Data | Only Use Raw Data</br>Recognition Accuracy | New Synthetic Data | Simultaneous Use of Synthetic Data</br>Recognition Accuracy | Index Improvement |
littletomatodonkey's avatar
littletomatodonkey committed
156
157
158
| -------- | ---------- | -------- | -------- | -------------------------- | ------------ | ---------------------- | -------- |
| Metal surface | English and numbers | 2203     | 650      | 0.5938                     | 20000        | 0.7546                 | 16%      |
| Random background | Korean       | 5631     | 1230     | 0.3012                     | 100000       | 0.5057                 | 20%      |
littletomatodonkey's avatar
littletomatodonkey committed
159
160
161
162


<a name="Code_structure"></a>
### Code Structure
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
163

littletomatodonkey's avatar
littletomatodonkey committed
164
```
littletomatodonkey's avatar
littletomatodonkey committed
165
StyleText
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
166
|-- arch                        // Network module files.
littletomatodonkey's avatar
littletomatodonkey committed
167
168
169
170
171
|   |-- base_module.py
|   |-- decoder.py
|   |-- encoder.py
|   |-- spectral_norm.py
|   `-- style_text_rec.py
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
172
|-- configs                     // Config files.
littletomatodonkey's avatar
littletomatodonkey committed
173
174
|   |-- config.yml
|   `-- dataset_config.yml
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
175
176
177
178
179
180
181
182
|-- engine                      // Synthesis engines.
|   |-- corpus_generators.py    // Sample corpus from file or generate random corpus.
|   |-- predictors.py           // Predict using network.
|   |-- style_samplers.py       // Sample style images.
|   |-- synthesisers.py         // Manage other engines to synthesis images.
|   |-- text_drawers.py         // Generate standard input text images.
|   `-- writers.py              // Write synthesis images and labels into files.
|-- examples                    // Example files.
littletomatodonkey's avatar
littletomatodonkey committed
183
184
185
186
187
188
|   |-- corpus
|   |   `-- example.txt
|   |-- image_list.txt
|   `-- style_images
|       |-- 1.jpg
|       `-- 2.jpg
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
189
|-- fonts                       // Font files.
littletomatodonkey's avatar
littletomatodonkey committed
190
191
192
|   |-- ch_standard.ttf
|   |-- en_standard.ttf
|   `-- ko_standard.ttf
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
193
|-- tools                       // Program entrance.
littletomatodonkey's avatar
littletomatodonkey committed
194
|   |-- __init__.py
littletomatodonkey's avatar
fix doc  
littletomatodonkey committed
195
196
197
|   |-- synth_dataset.py        // Synthesis dataset.
|   `-- synth_image.py          // Synthesis image.
`-- utils                       // Module of basic functions.
littletomatodonkey's avatar
littletomatodonkey committed
198
199
200
201
202
203
    |-- config.py
    |-- load_params.py
    |-- logging.py
    |-- math_functions.py
    `-- sys_funcs.py
```