inference_ppocr_en.md 6.73 KB
Newer Older
Leif's avatar
Leif committed
1

2
# Python Inference for PP-OCR Model Library
Leif's avatar
Leif committed
3
4
5
6

This article introduces the use of the Python inference engine for the PP-OCR model library. The content is in order of text detection, text recognition, direction classifier and the prediction method of the three in series on the CPU and GPU.


7
- [Text Detection Model Inference](#DETECTION_MODEL_INFERENCE)
Leif's avatar
Leif committed
8

9
10
11
- [Text Recognition Model Inference](#RECOGNITION_MODEL_INFERENCE)
    - [1. Lightweight Chinese Recognition Model Inference](#LIGHTWEIGHT_RECOGNITION)
    - [2. Multilingaul Model Inference](#MULTILINGUAL_MODEL_INFERENCE)
Leif's avatar
Leif committed
12
    
13
- [Angle Classification Model Inference](#ANGLE_CLASS_MODEL_INFERENCE)
Leif's avatar
Leif committed
14

15
- [Text Detection Angle Classification and Recognition Inference Concatenation](#CONCATENATION)
Leif's avatar
Leif committed
16
17
18

<a name="DETECTION_MODEL_INFERENCE"></a>

19
## Text Detection Model Inference
Leif's avatar
Leif committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

The default configuration is based on the inference setting of the DB text detection model. For lightweight Chinese detection model inference, you can execute the following commands:

```
# download DB text detection inference model
wget  https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar
tar xf ch_ppocr_mobile_v2.0_det_infer.tar
# predict
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/"
```

The visual text detection results are saved to the ./inference_results folder by default, and the name of the result file is prefixed with'det_res'. Examples of results are as follows:

![](../imgs_results/det_res_00018069.jpg)

You can use the parameters `limit_type` and `det_limit_side_len` to limit the size of the input image,
The optional parameters of `limit_type` are [`max`, `min`], and
`det_limit_size_len` is a positive integer, generally set to a multiple of 32, such as 960.

The default setting of the parameters is `limit_type='max', det_limit_side_len=960`. Indicates that the longest side of the network input image cannot exceed 960,
If this value is exceeded, the image will be resized with the same width ratio to ensure that the longest side is `det_limit_side_len`.
Set as `limit_type='min', det_limit_side_len=960`, it means that the shortest side of the image is limited to 960.

If the resolution of the input picture is relatively large and you want to use a larger resolution prediction, you can set det_limit_side_len to the desired value, such as 1216:
```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./inference/det_db/" --det_limit_type=max --det_limit_side_len=1216
```

If you want to use the CPU for prediction, execute the command as follows
```
python3 tools/infer/predict_det.py --image_dir="./doc/imgs/1.jpg" --det_model_dir="./inference/det_db/" --use_gpu=False
```

<a name="RECOGNITION_MODEL_INFERENCE"></a>

55
## Text Recognition Model Inference
Leif's avatar
Leif committed
56
57
58


<a name="LIGHTWEIGHT_RECOGNITION"></a>
59
### 1. Lightweight Chinese Recognition Model Inference
Leif's avatar
Leif committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

For lightweight Chinese recognition model inference, you can execute the following commands:

```
# download CRNN text recognition inference model
wget  https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_10.png" --rec_model_dir="ch_ppocr_mobile_v2.0_rec_infer"
```

![](../imgs_words_en/word_10.png)

After executing the command, the prediction results (recognized text and score) of the above image will be printed on the screen.

```bash
Predicts of ./doc/imgs_words_en/word_10.png:('PAIN', 0.9897658)
```

<a name="MULTILINGUAL_MODEL_INFERENCE"></a>

80
### 2. Multilingaul Model Inference
Leif's avatar
Leif committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
If you need to predict other language models, when using inference model prediction, you need to specify the dictionary path used by `--rec_char_dict_path`. At the same time, in order to get the correct visualization results,
You need to specify the visual font path through `--vis_font_path`. There are small language fonts provided by default under the `doc/fonts` path, such as Korean recognition:

```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/korean/1.jpg" --rec_model_dir="./your inference model" --rec_char_type="korean" --rec_char_dict_path="ppocr/utils/dict/korean_dict.txt" --vis_font_path="doc/fonts/korean.ttf"
```
![](../imgs_words/korean/1.jpg)

After executing the command, the prediction result of the above figure is:

``` text
Predicts of ./doc/imgs_words/korean/1.jpg:('바탕으로', 0.9948904)
```

<a name="ANGLE_CLASS_MODEL_INFERENCE"></a>

97
## Angle Classification Model Inference
Leif's avatar
Leif committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

For angle classification model inference, you can execute the following commands:


```
# download text angle class inference model:
wget  https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar xf ch_ppocr_mobile_v2.0_cls_infer.tar
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words_en/word_10.png" --cls_model_dir="ch_ppocr_mobile_v2.0_cls_infer"
```
![](../imgs_words_en/word_10.png)

After executing the command, the prediction results (classification angle and score) of the above image will be printed on the screen.

```
 Predicts of ./doc/imgs_words_en/word_10.png:['0', 0.9999995]
```

<a name="CONCATENATION"></a>
117
## Text Detection Angle Classification and Recognition Inference Concatenation
Leif's avatar
Leif committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

When performing prediction, you need to specify the path of a single image or a folder of images through the parameter `image_dir`, the parameter `det_model_dir` specifies the path to detect the inference model, the parameter `cls_model_dir` specifies the path to angle classification inference model and the parameter `rec_model_dir` specifies the path to identify the inference model. The parameter `use_angle_cls` is used to control whether to enable the angle classification model. The parameter `use_mp` specifies whether to use multi-process to infer `total_process_num` specifies process number when using multi-process. The parameter . The visualized recognition results are saved to the `./inference_results` folder by default.

```shell
# use direction classifier
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --cls_model_dir="./inference/cls/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=true

# not use use direction classifier
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/"

# use multi-process
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/00018069.jpg" --det_model_dir="./inference/det_db/" --rec_model_dir="./inference/rec_crnn/" --use_angle_cls=false --use_mp=True --total_process_num=6
```


After executing the command, the recognition result image is as follows:

![](../imgs_results/system_res_00018069.jpg)