tps.py 11.1 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
WenmuZhou's avatar
WenmuZhou committed
14
15
16
17
"""
This code is refer from:
https://github.com/clovaai/deep-text-recognition-benchmark/blob/master/modules/transformation.py
"""
WenmuZhou's avatar
WenmuZhou committed
18
19
20
21
22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

WenmuZhou's avatar
WenmuZhou committed
23
import math
WenmuZhou's avatar
WenmuZhou committed
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import paddle
from paddle import nn, ParamAttr
from paddle.nn import functional as F
import numpy as np


class ConvBNLayer(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 groups=1,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()
        self.conv = nn.Conv2D(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=(kernel_size - 1) // 2,
            groups=groups,
            weight_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
        bn_name = "bn_" + name
        self.bn = nn.BatchNorm(
            out_channels,
            act=act,
            param_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'),
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return x


class LocalizationNetwork(nn.Layer):
    def __init__(self, in_channels, num_fiducial, loc_lr, model_name):
        super(LocalizationNetwork, self).__init__()
        self.F = num_fiducial
        F = num_fiducial
        if model_name == "large":
            num_filters_list = [64, 128, 256, 512]
            fc_dim = 256
        else:
            num_filters_list = [16, 32, 64, 128]
            fc_dim = 64

        self.block_list = []
        for fno in range(0, len(num_filters_list)):
            num_filters = num_filters_list[fno]
            name = "loc_conv%d" % fno
            conv = self.add_sublayer(
                name,
                ConvBNLayer(
                    in_channels=in_channels,
                    out_channels=num_filters,
                    kernel_size=3,
                    act='relu',
                    name=name))
            self.block_list.append(conv)
            if fno == len(num_filters_list) - 1:
                pool = nn.AdaptiveAvgPool2D(1)
            else:
                pool = nn.MaxPool2D(kernel_size=2, stride=2, padding=0)
            in_channels = num_filters
            self.block_list.append(pool)
        name = "loc_fc1"
WenmuZhou's avatar
WenmuZhou committed
96
        stdv = 1.0 / math.sqrt(num_filters_list[-1] * 1.0)
WenmuZhou's avatar
WenmuZhou committed
97
98
99
100
        self.fc1 = nn.Linear(
            in_channels,
            fc_dim,
            weight_attr=ParamAttr(
WenmuZhou's avatar
WenmuZhou committed
101
102
103
                learning_rate=loc_lr,
                name=name + "_w",
                initializer=nn.initializer.Uniform(-stdv, stdv)),
WenmuZhou's avatar
WenmuZhou committed
104
105
106
107
108
109
110
111
112
            bias_attr=ParamAttr(name=name + '.b_0'),
            name=name)

        # Init fc2 in LocalizationNetwork
        initial_bias = self.get_initial_fiducials()
        initial_bias = initial_bias.reshape(-1)
        name = "loc_fc2"
        param_attr = ParamAttr(
            learning_rate=loc_lr,
113
            initializer=nn.initializer.Assign(np.zeros([fc_dim, F * 2])),
WenmuZhou's avatar
WenmuZhou committed
114
115
116
            name=name + "_w")
        bias_attr = ParamAttr(
            learning_rate=loc_lr,
117
            initializer=nn.initializer.Assign(initial_bias),
WenmuZhou's avatar
WenmuZhou committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
            name=name + "_b")
        self.fc2 = nn.Linear(
            fc_dim,
            F * 2,
            weight_attr=param_attr,
            bias_attr=bias_attr,
            name=name)
        self.out_channels = F * 2

    def forward(self, x):
        """
           Estimating parameters of geometric transformation
           Args:
               image: input
           Return:
               batch_C_prime: the matrix of the geometric transformation
        """
        B = x.shape[0]
        i = 0
        for block in self.block_list:
            x = block(x)
WenmuZhou's avatar
WenmuZhou committed
139
        x = x.squeeze(axis=2).squeeze(axis=2)
WenmuZhou's avatar
WenmuZhou committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
        x = self.fc1(x)

        x = F.relu(x)
        x = self.fc2(x)
        x = x.reshape(shape=[-1, self.F, 2])
        return x

    def get_initial_fiducials(self):
        """ see RARE paper Fig. 6 (a) """
        F = self.F
        ctrl_pts_x = np.linspace(-1.0, 1.0, int(F / 2))
        ctrl_pts_y_top = np.linspace(0.0, -1.0, num=int(F / 2))
        ctrl_pts_y_bottom = np.linspace(1.0, 0.0, num=int(F / 2))
        ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
        ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
        initial_bias = np.concatenate([ctrl_pts_top, ctrl_pts_bottom], axis=0)
        return initial_bias


class GridGenerator(nn.Layer):
    def __init__(self, in_channels, num_fiducial):
        super(GridGenerator, self).__init__()
        self.eps = 1e-6
        self.F = num_fiducial

        name = "ex_fc"
        initializer = nn.initializer.Constant(value=0.0)
        param_attr = ParamAttr(
            learning_rate=0.0, initializer=initializer, name=name + "_w")
        bias_attr = ParamAttr(
            learning_rate=0.0, initializer=initializer, name=name + "_b")
        self.fc = nn.Linear(
            in_channels,
            6,
            weight_attr=param_attr,
            bias_attr=bias_attr,
            name=name)

    def forward(self, batch_C_prime, I_r_size):
        """
        Generate the grid for the grid_sampler.
        Args:
            batch_C_prime: the matrix of the geometric transformation
            I_r_size: the shape of the input image
        Return:
            batch_P_prime: the grid for the grid_sampler
        """
WenmuZhou's avatar
WenmuZhou committed
187
188
189
190
191
192
        C = self.build_C_paddle()
        P = self.build_P_paddle(I_r_size)

        inv_delta_C_tensor = self.build_inv_delta_C_paddle(C).astype('float32')
        P_hat_tensor = self.build_P_hat_paddle(
            C, paddle.to_tensor(P)).astype('float32')
WenmuZhou's avatar
WenmuZhou committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206

        inv_delta_C_tensor.stop_gradient = True
        P_hat_tensor.stop_gradient = True

        batch_C_ex_part_tensor = self.get_expand_tensor(batch_C_prime)

        batch_C_ex_part_tensor.stop_gradient = True

        batch_C_prime_with_zeros = paddle.concat(
            [batch_C_prime, batch_C_ex_part_tensor], axis=1)
        batch_T = paddle.matmul(inv_delta_C_tensor, batch_C_prime_with_zeros)
        batch_P_prime = paddle.matmul(P_hat_tensor, batch_T)
        return batch_P_prime

WenmuZhou's avatar
WenmuZhou committed
207
    def build_C_paddle(self):
WenmuZhou's avatar
WenmuZhou committed
208
209
        """ Return coordinates of fiducial points in I_r; C """
        F = self.F
WenmuZhou's avatar
WenmuZhou committed
210
211
212
        ctrl_pts_x = paddle.linspace(-1.0, 1.0, int(F / 2), dtype='float64')
        ctrl_pts_y_top = -1 * paddle.ones([int(F / 2)], dtype='float64')
        ctrl_pts_y_bottom = paddle.ones([int(F / 2)], dtype='float64')
WenmuZhou's avatar
WenmuZhou committed
213
214
215
        ctrl_pts_top = paddle.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
        ctrl_pts_bottom = paddle.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
        C = paddle.concat([ctrl_pts_top, ctrl_pts_bottom], axis=0)
WenmuZhou's avatar
WenmuZhou committed
216
217
        return C  # F x 2

WenmuZhou's avatar
WenmuZhou committed
218
219
    def build_P_paddle(self, I_r_size):
        I_r_height, I_r_width = I_r_size
WenmuZhou's avatar
WenmuZhou committed
220
221
222
223
224
225
226
227
        I_r_grid_x = (paddle.arange(
            -I_r_width, I_r_width, 2, dtype='float64') + 1.0
                      ) / paddle.to_tensor(np.array([I_r_width]))

        I_r_grid_y = (paddle.arange(
            -I_r_height, I_r_height, 2, dtype='float64') + 1.0
                      ) / paddle.to_tensor(np.array([I_r_height]))

WenmuZhou's avatar
WenmuZhou committed
228
        # P: self.I_r_width x self.I_r_height x 2
WenmuZhou's avatar
WenmuZhou committed
229
230
        P = paddle.stack(paddle.meshgrid(I_r_grid_x, I_r_grid_y), axis=2)
        P = paddle.transpose(P, perm=[1, 0, 2])
WenmuZhou's avatar
WenmuZhou committed
231
232
233
        # n (= self.I_r_width x self.I_r_height) x 2
        return P.reshape([-1, 2])

WenmuZhou's avatar
WenmuZhou committed
234
    def build_inv_delta_C_paddle(self, C):
WenmuZhou's avatar
WenmuZhou committed
235
236
        """ Return inv_delta_C which is needed to calculate T """
        F = self.F
LDOUBLEV's avatar
LDOUBLEV committed
237
        hat_eye = paddle.eye(F, dtype='float64')  # F x F
tink2123's avatar
tink2123 committed
238
239
        hat_C = paddle.norm(
            C.reshape([1, F, 2]) - C.reshape([F, 1, 2]), axis=2) + hat_eye
WenmuZhou's avatar
WenmuZhou committed
240
241
        hat_C = (hat_C**2) * paddle.log(hat_C)
        delta_C = paddle.concat(  # F+3 x F+3
WenmuZhou's avatar
WenmuZhou committed
242
            [
WenmuZhou's avatar
WenmuZhou committed
243
                paddle.concat(
WenmuZhou's avatar
WenmuZhou committed
244
245
                    [paddle.ones(
                        (F, 1), dtype='float64'), C, hat_C], axis=1),  # F x F+3
WenmuZhou's avatar
WenmuZhou committed
246
                paddle.concat(
WenmuZhou's avatar
WenmuZhou committed
247
248
249
250
251
                    [
                        paddle.zeros(
                            (2, 3), dtype='float64'), paddle.transpose(
                                C, perm=[1, 0])
                    ],
WenmuZhou's avatar
WenmuZhou committed
252
253
                    axis=1),  # 2 x F+3
                paddle.concat(
WenmuZhou's avatar
WenmuZhou committed
254
255
256
257
258
                    [
                        paddle.zeros(
                            (1, 3), dtype='float64'), paddle.ones(
                                (1, F), dtype='float64')
                    ],
WenmuZhou's avatar
WenmuZhou committed
259
                    axis=1)  # 1 x F+3
WenmuZhou's avatar
WenmuZhou committed
260
261
            ],
            axis=0)
WenmuZhou's avatar
WenmuZhou committed
262
        inv_delta_C = paddle.inverse(delta_C)
WenmuZhou's avatar
WenmuZhou committed
263
264
        return inv_delta_C  # F+3 x F+3

WenmuZhou's avatar
WenmuZhou committed
265
    def build_P_hat_paddle(self, C, P):
WenmuZhou's avatar
WenmuZhou committed
266
267
268
269
        F = self.F
        eps = self.eps
        n = P.shape[0]  # n (= self.I_r_width x self.I_r_height)
        # P_tile: n x 2 -> n x 1 x 2 -> n x F x 2
WenmuZhou's avatar
WenmuZhou committed
270
271
        P_tile = paddle.tile(paddle.unsqueeze(P, axis=1), (1, F, 1))
        C_tile = paddle.unsqueeze(C, axis=0)  # 1 x F x 2
WenmuZhou's avatar
WenmuZhou committed
272
273
        P_diff = P_tile - C_tile  # n x F x 2
        # rbf_norm: n x F
WenmuZhou's avatar
WenmuZhou committed
274
275
        rbf_norm = paddle.norm(P_diff, p=2, axis=2, keepdim=False)

WenmuZhou's avatar
WenmuZhou committed
276
        # rbf: n x F
WenmuZhou's avatar
WenmuZhou committed
277
278
        rbf = paddle.multiply(
            paddle.square(rbf_norm), paddle.log(rbf_norm + eps))
WenmuZhou's avatar
WenmuZhou committed
279
280
281
        P_hat = paddle.concat(
            [paddle.ones(
                (n, 1), dtype='float64'), P, rbf], axis=1)
WenmuZhou's avatar
WenmuZhou committed
282
283
284
        return P_hat  # n x F+3

    def get_expand_tensor(self, batch_C_prime):
WenmuZhou's avatar
WenmuZhou committed
285
286
        B, H, C = batch_C_prime.shape
        batch_C_prime = batch_C_prime.reshape([B, H * C])
WenmuZhou's avatar
WenmuZhou committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
        batch_C_ex_part_tensor = self.fc(batch_C_prime)
        batch_C_ex_part_tensor = batch_C_ex_part_tensor.reshape([-1, 3, 2])
        return batch_C_ex_part_tensor


class TPS(nn.Layer):
    def __init__(self, in_channels, num_fiducial, loc_lr, model_name):
        super(TPS, self).__init__()
        self.loc_net = LocalizationNetwork(in_channels, num_fiducial, loc_lr,
                                           model_name)
        self.grid_generator = GridGenerator(self.loc_net.out_channels,
                                            num_fiducial)
        self.out_channels = in_channels

    def forward(self, image):
        image.stop_gradient = False
        batch_C_prime = self.loc_net(image)
WenmuZhou's avatar
WenmuZhou committed
304
        batch_P_prime = self.grid_generator(batch_C_prime, image.shape[2:])
WenmuZhou's avatar
WenmuZhou committed
305
306
307
308
        batch_P_prime = batch_P_prime.reshape(
            [-1, image.shape[2], image.shape[3], 2])
        batch_I_r = F.grid_sample(x=image, grid=batch_P_prime)
        return batch_I_r