train_re.py 8.64 KB
Newer Older
WenmuZhou's avatar
add re  
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))

import random
zhoujun's avatar
zhoujun committed
23
import time
WenmuZhou's avatar
add re  
WenmuZhou committed
24
25
26
27
28
29
import numpy as np
import paddle

from paddlenlp.transformers import LayoutXLMTokenizer, LayoutXLMModel, LayoutXLMForRelationExtraction

from xfun import XFUNDataset
zhoujun's avatar
zhoujun committed
30
from utils import parse_args, get_bio_label_maps, print_arguments, set_seed
WenmuZhou's avatar
add re  
WenmuZhou committed
31
from data_collator import DataCollator
zhoujun's avatar
zhoujun committed
32
from eval_re import evaluate
WenmuZhou's avatar
add re  
WenmuZhou committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

from ppocr.utils.logging import get_logger


def train(args):
    logger = get_logger(log_file=os.path.join(args.output_dir, "train.log"))
    print_arguments(args, logger)

    # Added here for reproducibility (even between python 2 and 3)
    set_seed(args.seed)

    label2id_map, id2label_map = get_bio_label_maps(args.label_map_path)
    pad_token_label_id = paddle.nn.CrossEntropyLoss().ignore_index

    # dist mode
    if paddle.distributed.get_world_size() > 1:
        paddle.distributed.init_parallel_env()

    tokenizer = LayoutXLMTokenizer.from_pretrained(args.model_name_or_path)
zhoujun's avatar
zhoujun committed
52
53
54
55
56
57
58
59
    if not args.resume:
        model = LayoutXLMModel.from_pretrained(args.model_name_or_path)
        model = LayoutXLMForRelationExtraction(model, dropout=None)
        logger.info('train from scratch')
    else:
        logger.info('resume from {}'.format(args.model_name_or_path))
        model = LayoutXLMForRelationExtraction.from_pretrained(
            args.model_name_or_path)
WenmuZhou's avatar
add re  
WenmuZhou committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

    # dist mode
    if paddle.distributed.get_world_size() > 1:
        model = paddle.distributed.DataParallel(model)

    train_dataset = XFUNDataset(
        tokenizer,
        data_dir=args.train_data_dir,
        label_path=args.train_label_path,
        label2id_map=label2id_map,
        img_size=(224, 224),
        max_seq_len=args.max_seq_length,
        pad_token_label_id=pad_token_label_id,
        contains_re=True,
        add_special_ids=False,
        return_attention_mask=True,
        load_mode='all')

    eval_dataset = XFUNDataset(
        tokenizer,
        data_dir=args.eval_data_dir,
        label_path=args.eval_label_path,
        label2id_map=label2id_map,
        img_size=(224, 224),
        max_seq_len=args.max_seq_length,
        pad_token_label_id=pad_token_label_id,
        contains_re=True,
        add_special_ids=False,
        return_attention_mask=True,
        load_mode='all')

    train_sampler = paddle.io.DistributedBatchSampler(
        train_dataset, batch_size=args.per_gpu_train_batch_size, shuffle=True)
    args.train_batch_size = args.per_gpu_train_batch_size * \
                            max(1, paddle.distributed.get_world_size())
    train_dataloader = paddle.io.DataLoader(
        train_dataset,
        batch_sampler=train_sampler,
        num_workers=8,
        use_shared_memory=True,
        collate_fn=DataCollator())

    eval_dataloader = paddle.io.DataLoader(
        eval_dataset,
        batch_size=args.per_gpu_eval_batch_size,
        num_workers=8,
        shuffle=False,
        collate_fn=DataCollator())

    t_total = len(train_dataloader) * args.num_train_epochs

    # build linear decay with warmup lr sch
    lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
        learning_rate=args.learning_rate,
        decay_steps=t_total,
        end_lr=0.0,
        power=1.0)
    if args.warmup_steps > 0:
        lr_scheduler = paddle.optimizer.lr.LinearWarmup(
            lr_scheduler,
            args.warmup_steps,
            start_lr=0,
            end_lr=args.learning_rate, )
    grad_clip = paddle.nn.ClipGradByNorm(clip_norm=10)
    optimizer = paddle.optimizer.Adam(
        learning_rate=args.learning_rate,
        parameters=model.parameters(),
        epsilon=args.adam_epsilon,
        grad_clip=grad_clip,
        weight_decay=args.weight_decay)

    # Train!
    logger.info("***** Running training *****")
    logger.info("  Num examples = {}".format(len(train_dataset)))
    logger.info("  Num Epochs = {}".format(args.num_train_epochs))
    logger.info("  Instantaneous batch size per GPU = {}".format(
        args.per_gpu_train_batch_size))
    logger.info(
        "  Total train batch size (w. parallel, distributed & accumulation) = {}".
        format(args.train_batch_size * paddle.distributed.get_world_size()))
    logger.info("  Total optimization steps = {}".format(t_total))

    global_step = 0
    model.clear_gradients()
    train_dataloader_len = len(train_dataloader)
    best_metirc = {'f1': 0}
    model.train()

zhoujun's avatar
zhoujun committed
148
149
150
151
152
153
154
    train_reader_cost = 0.0
    train_run_cost = 0.0
    total_samples = 0
    reader_start = time.time()

    print_step = 1

WenmuZhou's avatar
add re  
WenmuZhou committed
155
156
    for epoch in range(int(args.num_train_epochs)):
        for step, batch in enumerate(train_dataloader):
zhoujun's avatar
zhoujun committed
157
158
            train_reader_cost += time.time() - reader_start
            train_start = time.time()
WenmuZhou's avatar
add re  
WenmuZhou committed
159
            outputs = model(**batch)
zhoujun's avatar
zhoujun committed
160
            train_run_cost += time.time() - train_start
WenmuZhou's avatar
add re  
WenmuZhou committed
161
162
163
164
165
166
167
168
169
170
            # model outputs are always tuple in ppnlp (see doc)
            loss = outputs['loss']
            loss = loss.mean()

            loss.backward()
            optimizer.step()
            optimizer.clear_grad()
            # lr_scheduler.step()  # Update learning rate schedule

            global_step += 1
zhoujun's avatar
zhoujun committed
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
            total_samples += batch['image'].shape[0]

            if step % print_step == 0:
                logger.info(
                    "epoch: [{}/{}], iter: [{}/{}], global_step:{}, train loss: {:.6f}, lr: {:.6f}, avg_reader_cost: {:.5f} sec, avg_batch_cost: {:.5f} sec, avg_samples: {:.5f}, ips: {:.5f} images/sec".
                    format(epoch, args.num_train_epochs, step,
                           train_dataloader_len, global_step,
                           np.mean(loss.numpy()),
                           optimizer.get_lr(), train_reader_cost / print_step, (
                               train_reader_cost + train_run_cost) / print_step,
                           total_samples / print_step, total_samples / (
                               train_reader_cost + train_run_cost)))

                train_reader_cost = 0.0
                train_run_cost = 0.0
                total_samples = 0
WenmuZhou's avatar
add re  
WenmuZhou committed
187
188
189
190
191
192
193

            if (paddle.distributed.get_rank() == 0 and args.eval_steps > 0 and
                    global_step % args.eval_steps == 0):
                # Log metrics
                if (paddle.distributed.get_rank() == 0 and args.
                        evaluate_during_training):  # Only evaluate when single GPU otherwise metrics may not average well
                    results = evaluate(model, eval_dataloader, logger)
zhoujun's avatar
zhoujun committed
194
                    if results['f1'] >= best_metirc['f1']:
WenmuZhou's avatar
add re  
WenmuZhou committed
195
                        best_metirc = results
zhoujun's avatar
zhoujun committed
196
                        output_dir = os.path.join(args.output_dir, "best_model")
WenmuZhou's avatar
add re  
WenmuZhou committed
197
198
199
200
201
202
203
204
205
206
207
                        os.makedirs(output_dir, exist_ok=True)
                        model.save_pretrained(output_dir)
                        tokenizer.save_pretrained(output_dir)
                        paddle.save(args,
                                    os.path.join(output_dir,
                                                 "training_args.bin"))
                        logger.info("Saving model checkpoint to {}".format(
                            output_dir))
                    logger.info("eval results: {}".format(results))
                    logger.info("best_metirc: {}".format(best_metirc))

zhoujun's avatar
zhoujun committed
208
            if paddle.distributed.get_rank() == 0:
WenmuZhou's avatar
add re  
WenmuZhou committed
209
                # Save model checkpoint
zhoujun's avatar
zhoujun committed
210
                output_dir = os.path.join(args.output_dir, "latest_model")
WenmuZhou's avatar
add re  
WenmuZhou committed
211
212
213
214
215
216
217
218
                os.makedirs(output_dir, exist_ok=True)
                if paddle.distributed.get_rank() == 0:
                    model.save_pretrained(output_dir)
                    tokenizer.save_pretrained(output_dir)
                    paddle.save(args,
                                os.path.join(output_dir, "training_args.bin"))
                    logger.info("Saving model checkpoint to {}".format(
                        output_dir))
zhoujun's avatar
zhoujun committed
219
            reader_start = time.time()
WenmuZhou's avatar
add re  
WenmuZhou committed
220
221
222
223
224
225
226
    logger.info("best_metirc: {}".format(best_metirc))


if __name__ == "__main__":
    args = parse_args()
    os.makedirs(args.output_dir, exist_ok=True)
    train(args)