detection_en.md 13.1 KB
Newer Older
1
# Text Detection
LDOUBLEV's avatar
LDOUBLEV committed
2

3
This section uses the icdar2015 dataset as an example to introduce the training, evaluation, and testing of the detection model in PaddleOCR.
LDOUBLEV's avatar
LDOUBLEV committed
4

5
6
- [1. Data and Weights Preparation](#1-data-and-weights-preparatio)
  * [1.1 Data Preparation](#11-data-preparation)
WenmuZhou's avatar
WenmuZhou committed
7
8
    * [1.1.1 Public dataset](#111-public-dataset)
    * [1.1.2 Custom dataset](#112-custom-dataset)
fanruinet's avatar
fanruinet committed
9
  * [1.2 Download Pre-trained Model](#12-download-pretrained-model)
10
11
12
13
- [2. Training](#2-training)
  * [2.1 Start Training](#21-start-training)
  * [2.2 Load Trained Model and Continue Training](#22-load-trained-model-and-continue-training)
  * [2.3 Training with New Backbone](#23-training-with-new-backbone)
14
  * [2.4 Training with knowledge distillation](#24)
15
16
17
18
19
- [3. Evaluation and Test](#3-evaluation-and-test)
  * [3.1 Evaluation](#31-evaluation)
  * [3.2 Test](#32-test)
- [4. Inference](#4-inference)
- [5. FAQ](#2-faq)
Khanh Tran's avatar
Khanh Tran committed
20

21
## 1. Data and Weights Preparation
Khanh Tran's avatar
Khanh Tran committed
22

23
### 1.1 Data Preparation
LDOUBLEV's avatar
LDOUBLEV committed
24

WenmuZhou's avatar
WenmuZhou committed
25
26
### 1.1.1 Public dataset
Public datasets can be downloaded and prepared by referring to [ocr_datasets](./dataset/ocr_datasets_en.md).
Khanh Tran's avatar
Khanh Tran committed
27

WenmuZhou's avatar
WenmuZhou committed
28
### 1.1.2 Custom dataset
LDOUBLEV's avatar
LDOUBLEV committed
29

WenmuZhou's avatar
WenmuZhou committed
30
The annotation file formats supported by the PaddleOCR text detection algorithm are as follows, separated by "\t":
Khanh Tran's avatar
Khanh Tran committed
31
32
```
" Image file name             Image annotation information encoded by json.dumps"
LDOUBLEV's avatar
LDOUBLEV committed
33
ch4_test_images/img_61.jpg    [{"transcription": "MASA", "points": [[310, 104], [416, 141], [418, 216], [312, 179]]}, {...}]
Khanh Tran's avatar
Khanh Tran committed
34
```
WenmuZhou's avatar
WenmuZhou committed
35
The image annotation after **json.dumps()** encoding is a list containing multiple dictionaries.
Khanh Tran's avatar
Khanh Tran committed
36

licx's avatar
licx committed
37
38
39
40
41
The `points` in the dictionary represent the coordinates (x, y) of the four points of the text box, arranged clockwise from the point at the upper left corner.

`transcription` represents the text of the current text box. **When its content is "###" it means that the text box is invalid and will be skipped during training.**

If you want to train PaddleOCR on other datasets, please build the annotation file according to the above format.
Khanh Tran's avatar
Khanh Tran committed
42
43


fanruinet's avatar
fanruinet committed
44
### 1.2 Download Pre-trained Model
45

fanruinet's avatar
fanruinet committed
46
47
First download the pre-trained model. The detection model of PaddleOCR currently supports 3 backbones, namely MobileNetV3, ResNet18_vd and ResNet50_vd. You can use the model in [PaddleClas](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.0/ppcls/modeling/architectures) to replace backbone according to your needs.
And the responding download link of backbone pre-trained weights can be found in (https://github.com/PaddlePaddle/PaddleClas/blob/release%2F2.0/README_cn.md#resnet%E5%8F%8A%E5%85%B6vd%E7%B3%BB%E5%88%97).
Khanh Tran's avatar
Khanh Tran committed
48

licx's avatar
licx committed
49
```shell
Khanh Tran's avatar
Khanh Tran committed
50
51
cd PaddleOCR/
# Download the pre-trained model of MobileNetV3
tink2123's avatar
tink2123 committed
52
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/MobileNetV3_large_x0_5_pretrained.pdparams
WenmuZhou's avatar
WenmuZhou committed
53
# or, download the pre-trained model of ResNet18_vd
tink2123's avatar
tink2123 committed
54
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/ResNet18_vd_pretrained.pdparams
WenmuZhou's avatar
WenmuZhou committed
55
# or, download the pre-trained model of ResNet50_vd
tink2123's avatar
tink2123 committed
56
wget -P ./pretrain_models/ https://paddleocr.bj.bcebos.com/pretrained/ResNet50_vd_ssld_pretrained.pdparams
57

58
```
Khanh Tran's avatar
Khanh Tran committed
59

Leif's avatar
Leif committed
60
## 2. Training
61
62
63

### 2.1 Start Training

MissPenguin's avatar
MissPenguin committed
64
*If CPU version installed, please set the parameter `use_gpu` to `false` in the configuration.*
licx's avatar
licx committed
65
```shell
66
python3 tools/train.py -c configs/det/det_mv3_db.yml  \
Leif's avatar
Leif committed
67
         -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
Khanh Tran's avatar
Khanh Tran committed
68
69
```

MissPenguin's avatar
MissPenguin committed
70
71
In the above instruction, use `-c` to select the training to use the `configs/det/det_db_mv3.yml` configuration file.
For a detailed explanation of the configuration file, please refer to [config](./config_en.md).
Khanh Tran's avatar
Khanh Tran committed
72

73
You can also use `-o` to change the training parameters without modifying the yml file. For example, adjust the training learning rate to 0.0001
licx's avatar
licx committed
74
```shell
LDOUBLEV's avatar
update  
LDOUBLEV committed
75
# single GPU training
76
python3 tools/train.py -c configs/det/det_mv3_db.yml -o   \
Leif's avatar
Leif committed
77
         Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained  \
78
         Optimizer.base_lr=0.0001
LDOUBLEV's avatar
update  
LDOUBLEV committed
79
80

# multi-GPU training
81
# Set the GPU ID used by the '--gpus' parameter.
Leif's avatar
Leif committed
82
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
stephon's avatar
stephon committed
83

Bin Lu's avatar
Bin Lu committed
84
# multi-Node, multi-GPU training
Bin Lu's avatar
Bin Lu committed
85
# Set the IPs of your nodes used by the '--ips' parameter. Set the GPU ID used by the '--gpus' parameter.
stephon's avatar
stephon committed
86
python3 -m paddle.distributed.launch --ips="xx.xx.xx.xx,xx.xx.xx.xx" --gpus '0,1,2,3' tools/train.py -c configs/det/det_mv3_db.yml \
Bin Lu's avatar
Bin Lu committed
87
88
     -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
```
stephon's avatar
stephon committed
89
90
**Note:** For multi-Node multi-GPU training, you need to replace the `ips` value in the preceding command with the address of your machine, and the machines must be able to ping each other. In addition, it requires activating commands separately on multiple machines when we start the training. The command for viewing the IP address of the machine is `ifconfig`.

Bin Lu's avatar
Bin Lu committed
91
If you want to further speed up the training, you can use [automatic mixed precision training](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/01_paddle2.0_introduction/basic_concept/amp_en.html). for single card training, the command is as follows:
Bin Lu's avatar
Bin Lu committed
92
93
94
95
```
python3 tools/train.py -c configs/det/det_mv3_db.yml \
     -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained \
     Global.use_amp=True Global.scale_loss=1024.0 Global.use_dynamic_loss_scaling=True
Khanh Tran's avatar
Khanh Tran committed
96
97
```

98
### 2.2 Load Trained Model and Continue Training
99
If you expect to load trained model and continue the training again, you can specify the parameter `Global.checkpoints` as the model path to be loaded.
LDOUBLEV's avatar
LDOUBLEV committed
100
101

For example:
licx's avatar
licx committed
102
```shell
LDOUBLEV's avatar
LDOUBLEV committed
103
python3 tools/train.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=./your/trained/model
LDOUBLEV's avatar
LDOUBLEV committed
104
105
```

Leif's avatar
Leif committed
106
**Note**: The priority of `Global.checkpoints` is higher than that of `Global.pretrained_model`, that is, when two parameters are specified at the same time, the model specified by `Global.checkpoints` will be loaded first. If the model path specified by `Global.checkpoints` is wrong, the one specified by `Global.pretrained_model` will be loaded.
LDOUBLEV's avatar
LDOUBLEV committed
107
108


109
### 2.3 Training with New Backbone
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158

The network part completes the construction of the network, and PaddleOCR divides the network into four parts, which are under [ppocr/modeling](../../ppocr/modeling). The data entering the network will pass through these four parts in sequence(transforms->backbones->
necks->heads).

```bash
├── architectures # Code for building network
├── transforms    # Image Transformation Module
├── backbones     # Feature extraction module
├── necks         # Feature enhancement module
└── heads         # Output module
```

If the Backbone to be replaced has a corresponding implementation in PaddleOCR, you can directly modify the parameters in the `Backbone` part of the configuration yml file.

However, if you want to use a new Backbone, an example of replacing the backbones is as follows:

1. Create a new file under the [ppocr/modeling/backbones](../../ppocr/modeling/backbones) folder, such as my_backbone.py.
2. Add code in the my_backbone.py file, the sample code is as follows:

```python
import paddle
import paddle.nn as nn
import paddle.nn.functional as F


class MyBackbone(nn.Layer):
    def __init__(self, *args, **kwargs):
        super(MyBackbone, self).__init__()
        # your init code
        self.conv = nn.xxxx

    def forward(self, inputs):
        # your network forward
        y = self.conv(inputs)
        return y
```

3. Import the added module in the [ppocr/modeling/backbones/\__init\__.py](../../ppocr/modeling/backbones/__init__.py) file.

After adding the four-part modules of the network, you only need to configure them in the configuration file to use, such as:

```yaml
  Backbone:
    name: MyBackbone
    args1: args1
```

**NOTE**: More details about replace Backbone and other mudule can be found in [doc](add_new_algorithm_en.md).

159
160
161
162
163

### 2.4 Training with knowledge distillation

Knowledge distillation is supported in PaddleOCR for text detection training process. For more details, please refer to [doc](./knowledge_distillation_en.md).

164
165
166
## 3. Evaluation and Test

### 3.1 Evaluation
Khanh Tran's avatar
Khanh Tran committed
167

168
PaddleOCR calculates three indicators for evaluating performance of OCR detection task: Precision, Recall, and Hmean(F-Score).
Khanh Tran's avatar
Khanh Tran committed
169

LDOUBLEV's avatar
LDOUBLEV committed
170
Run the following code to calculate the evaluation indicators. The result will be saved in the test result file specified by `save_res_path` in the configuration file `det_db_mv3.yml`
Khanh Tran's avatar
Khanh Tran committed
171

172
When evaluating, set post-processing parameters `box_thresh=0.6`, `unclip_ratio=1.5`. If you use different datasets, different models for training, these two parameters should be adjusted for better result.
Khanh Tran's avatar
Khanh Tran committed
173

LDOUBLEV's avatar
LDOUBLEV committed
174
The model parameters during training are saved in the `Global.save_model_dir` directory by default. When evaluating indicators, you need to set `Global.checkpoints` to point to the saved parameter file.
licx's avatar
licx committed
175
```shell
LDOUBLEV's avatar
LDOUBLEV committed
176
python3 tools/eval.py -c configs/det/det_mv3_db.yml  -o Global.checkpoints="{path/to/weights}/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
Khanh Tran's avatar
Khanh Tran committed
177
178
```

179
* Note: `box_thresh` and `unclip_ratio` are parameters required for DB post-processing, and not need to be set when evaluating the EAST and SAST model.
Khanh Tran's avatar
Khanh Tran committed
180

181
### 3.2 Test
Khanh Tran's avatar
Khanh Tran committed
182
183

Test the detection result on a single image:
184
```shell
185
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy"
Khanh Tran's avatar
Khanh Tran committed
186
187
188
```

When testing the DB model, adjust the post-processing threshold:
189
```shell
190
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy"  PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=2.0
Khanh Tran's avatar
Khanh Tran committed
191
192
193
194
```


Test the detection result on all images in the folder:
195
```shell
196
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/" Global.pretrained_model="./output/det_db/best_accuracy"
Khanh Tran's avatar
Khanh Tran committed
197
```
198

199
## 4. Inference
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.

The model saved during the training process is the checkpoints model, which saves the parameters of the model and is mostly used to resume training.

Compared with the checkpoints model, the inference model will additionally save the structural information of the model. Therefore, it is easier to deploy because the model structure and model parameters are already solidified in the inference model file, and is suitable for integration with actual systems.

Firstly, we can convert DB trained model to inference model:
```shell
python3 tools/export_model.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model="./output/det_db/best_accuracy" Global.save_inference_dir="./output/det_db_inference/"
```

The detection inference model prediction:
```shell
python3 tools/infer/predict_det.py --det_algorithm="DB" --det_model_dir="./output/det_db_inference/" --image_dir="./doc/imgs/" --use_gpu=True
```

If it is other detection algorithms, such as the EAST, the det_algorithm parameter needs to be modified to EAST, and the default is the DB algorithm:
```shell
python3 tools/infer/predict_det.py --det_algorithm="EAST" --det_model_dir="./output/det_db_inference/" --image_dir="./doc/imgs/" --use_gpu=True
```

222
## 5. FAQ
223
224

Q1: The prediction results of trained model and inference model are inconsistent?
225

226
227
228
**A**: Most of the problems are caused by the inconsistency of the pre-processing and post-processing parameters during the prediction of the trained model and the pre-processing and post-processing parameters during the prediction of the inference model. Taking the model trained by the det_mv3_db.yml configuration file as an example, the solution to the problem of inconsistent prediction results between the training model and the inference model is as follows:
- Check whether the [trained model preprocessing](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/configs/det/det_mv3_db.yml#L116) is consistent with the prediction [preprocessing function of the inference model](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/tools/infer/predict_det.py#L42). When the algorithm is evaluated, the input image size will affect the accuracy. In order to be consistent with the paper, the image is resized to [736, 1280] in the training icdar15 configuration file, but there is only a set of default parameters when the inference model predicts, which will be considered To predict the speed problem, the longest side of the image is limited to 960 for resize by default. The preprocessing function of the training model preprocessing and the inference model is located in [ppocr/data/imaug/operators.py](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/ppocr/data/imaug/operators.py#L147)
- Check whether the [post-processing of the trained model](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/configs/det/det_mv3_db.yml#L51) is consistent with the [post-processing parameters of the inference](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/tools/infer/utility.py#L50).