"varify.py" did not exist on "ba4486d8391e2fc3c1fb8fff074c3e74ce383639"
tps_torch.py 6.11 KB
Newer Older
tink2123's avatar
tink2123 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from __future__ import absolute_import

import numpy as np
import itertools

import torch
import torch.nn as nn
import torch.nn.functional as F


def grid_sample(input, grid, canvas=None):
    output = F.grid_sample(input, grid)
    if canvas is None:
        return output
    else:
        input_mask = input.data.new(input.size()).fill_(1)
        output_mask = F.grid_sample(input_mask, grid)
        padded_output = output * output_mask + canvas * (1 - output_mask)
        return padded_output


# phi(x1, x2) = r^2 * log(r), where r = ||x1 - x2||_2
def compute_partial_repr(input_points, control_points):
    N = input_points.size(0)
    M = control_points.size(0)
    pairwise_diff = input_points.view(N, 1, 2) - control_points.view(1, M, 2)
    # original implementation, very slow
    # pairwise_dist = torch.sum(pairwise_diff ** 2, dim = 2) # square of distance
    pairwise_diff_square = pairwise_diff * pairwise_diff
    pairwise_dist = pairwise_diff_square[:, :, 0] + pairwise_diff_square[:, :,
                                                                         1]
    repr_matrix = 0.5 * pairwise_dist * torch.log(pairwise_dist)
    # fix numerical error for 0 * log(0), substitute all nan with 0
    mask = repr_matrix != repr_matrix
    repr_matrix.masked_fill_(mask, 0)
    return repr_matrix


# output_ctrl_pts are specified, according to our task.
def build_output_control_points(num_control_points, margins):
    margin_x, margin_y = margins
    num_ctrl_pts_per_side = num_control_points // 2
    ctrl_pts_x = np.linspace(margin_x, 1.0 - margin_x, num_ctrl_pts_per_side)
    ctrl_pts_y_top = np.ones(num_ctrl_pts_per_side) * margin_y
    ctrl_pts_y_bottom = np.ones(num_ctrl_pts_per_side) * (1.0 - margin_y)
    ctrl_pts_top = np.stack([ctrl_pts_x, ctrl_pts_y_top], axis=1)
    ctrl_pts_bottom = np.stack([ctrl_pts_x, ctrl_pts_y_bottom], axis=1)
    # ctrl_pts_top = ctrl_pts_top[1:-1,:]
    # ctrl_pts_bottom = ctrl_pts_bottom[1:-1,:]
    output_ctrl_pts_arr = np.concatenate(
        [ctrl_pts_top, ctrl_pts_bottom], axis=0)
    output_ctrl_pts = torch.Tensor(output_ctrl_pts_arr)
    return output_ctrl_pts


# demo: ~/test/models/test_tps_transformation.py
class TPSSpatialTransformer(nn.Module):
    def __init__(self,
                 output_image_size=None,
                 num_control_points=None,
                 margins=None):
        super(TPSSpatialTransformer, self).__init__()
        self.output_image_size = output_image_size
        self.num_control_points = num_control_points
        self.margins = margins

        self.target_height, self.target_width = output_image_size
        target_control_points = build_output_control_points(num_control_points,
                                                            margins)
        N = num_control_points
        # N = N - 4

        # create padded kernel matrix
        forward_kernel = torch.zeros(N + 3, N + 3)
        target_control_partial_repr = compute_partial_repr(
            target_control_points, target_control_points)
        forward_kernel[:N, :N].copy_(target_control_partial_repr)
        forward_kernel[:N, -3].fill_(1)
        forward_kernel[-3, :N].fill_(1)
        forward_kernel[:N, -2:].copy_(target_control_points)
        forward_kernel[-2:, :N].copy_(target_control_points.transpose(0, 1))
        # compute inverse matrix
        inverse_kernel = torch.inverse(forward_kernel)

        # create target cordinate matrix
        HW = self.target_height * self.target_width
        target_coordinate = list(
            itertools.product(
                range(self.target_height), range(self.target_width)))
        target_coordinate = torch.Tensor(target_coordinate)  # HW x 2
        Y, X = target_coordinate.split(1, dim=1)
        Y = Y / (self.target_height - 1)
        X = X / (self.target_width - 1)
        target_coordinate = torch.cat([X, Y],
                                      dim=1)  # convert from (y, x) to (x, y)
        target_coordinate_partial_repr = compute_partial_repr(
            target_coordinate, target_control_points)
        target_coordinate_repr = torch.cat([
            target_coordinate_partial_repr, torch.ones(HW, 1), target_coordinate
        ],
                                           dim=1)

        # register precomputed matrices
        self.register_buffer('inverse_kernel', inverse_kernel)
        self.register_buffer('padding_matrix', torch.zeros(3, 2))
        self.register_buffer('target_coordinate_repr', target_coordinate_repr)
        self.register_buffer('target_control_points', target_control_points)

    def forward(self, input, source_control_points):
        assert source_control_points.ndimension() == 3
        assert source_control_points.size(1) == self.num_control_points
        assert source_control_points.size(2) == 2
        batch_size = source_control_points.size(0)

        Y = torch.cat([
            source_control_points, self.padding_matrix.expand(batch_size, 3, 2)
        ], 1)
        mapping_matrix = torch.matmul(self.inverse_kernel, Y)
        source_coordinate = torch.matmul(self.target_coordinate_repr,
                                         mapping_matrix)

        grid = source_coordinate.view(-1, self.target_height, self.target_width,
                                      2)
        grid = torch.clamp(grid, 0,
                           1)  # the source_control_points may be out of [0, 1].
        # the input to grid_sample is normalized [-1, 1], but what we get is [0, 1]
        grid = 2.0 * grid - 1.0
        output_maps = grid_sample(input, grid, canvas=None)
        return output_maps, source_coordinate


if __name__ == "__main__":
    from stn_torch import STNHead
    in_planes = 3
    num_ctrlpoints = 20
    torch.manual_seed(10)
    activation = 'none'  # 'sigmoid'
    stn_head = STNHead(in_planes, num_ctrlpoints, activation)
    np.random.seed(100)
    data = np.random.randn(10, 3, 32, 64).astype("float32")
    input = torch.tensor(data)
    control_points = stn_head(input)
    tps = TPSSpatialTransformer(
        output_image_size=[32, 320],
        num_control_points=20,
        margins=[0.05, 0.05])
    out = tps(input, control_points[1])
    print("out 0 :", out[0].shape)
    print("out 1:", out[1].shape)