detection_en.md 14.1 KB
Newer Older
1
# Text Detection
LDOUBLEV's avatar
LDOUBLEV committed
2

3
This section uses the icdar2015 dataset as an example to introduce the training, evaluation, and testing of the detection model in PaddleOCR.
LDOUBLEV's avatar
LDOUBLEV committed
4

5
6
7
8
9
10
11
12
13
14
15
16
- [1. Data and Weights Preparation](#1-data-and-weights-preparatio)
  * [1.1 Data Preparation](#11-data-preparation)
  * [1.2 Download Pretrained Model](#12-download-pretrained-model)
- [2. Training](#2-training)
  * [2.1 Start Training](#21-start-training)
  * [2.2 Load Trained Model and Continue Training](#22-load-trained-model-and-continue-training)
  * [2.3 Training with New Backbone](#23-training-with-new-backbone)
- [3. Evaluation and Test](#3-evaluation-and-test)
  * [3.1 Evaluation](#31-evaluation)
  * [3.2 Test](#32-test)
- [4. Inference](#4-inference)
- [5. FAQ](#2-faq)
Khanh Tran's avatar
Khanh Tran committed
17

18
## 1. Data and Weights Preparation
Khanh Tran's avatar
Khanh Tran committed
19

20
### 1.1 Data Preparation
LDOUBLEV's avatar
LDOUBLEV committed
21
22

The icdar2015 dataset contains train set which has 1000 images obtained with wearable cameras and test set which has 500 images obtained with wearable cameras. The icdar2015 can be obtained from [official website](https://rrc.cvc.uab.es/?ch=4&com=downloads). Registration is required for downloading.
Khanh Tran's avatar
Khanh Tran committed
23

LDOUBLEV's avatar
LDOUBLEV committed
24
25
26
27

After registering and logging in, download the part marked in the red box in the figure below. And, the content downloaded by `Training Set Images` should be saved as the folder `icdar_c4_train_imgs`, and the content downloaded by `Test Set Images` is saved as the folder `ch4_test_images`

<p align="center">
LDOUBLEV's avatar
LDOUBLEV committed
28
 <img src="../datasets/ic15_location_download.png" align="middle" width = "700"/>
LDOUBLEV's avatar
LDOUBLEV committed
29
30
<p align="center">

Khanh Tran's avatar
Khanh Tran committed
31
Decompress the downloaded dataset to the working directory, assuming it is decompressed under PaddleOCR/train_data/. In addition, PaddleOCR organizes many scattered annotation files into two separate annotation files for train and test respectively, which can be downloaded by wget:
licx's avatar
licx committed
32
```shell
Khanh Tran's avatar
Khanh Tran committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# Under the PaddleOCR path
cd PaddleOCR/
wget -P ./train_data/  https://paddleocr.bj.bcebos.com/dataset/train_icdar2015_label.txt
wget -P ./train_data/  https://paddleocr.bj.bcebos.com/dataset/test_icdar2015_label.txt
```

After decompressing the data set and downloading the annotation file, PaddleOCR/train_data/ has two folders and two files, which are:
```
/PaddleOCR/train_data/icdar2015/text_localization/
  └─ icdar_c4_train_imgs/         Training data of icdar dataset
  └─ ch4_test_images/             Testing data of icdar dataset
  └─ train_icdar2015_label.txt    Training annotation of icdar dataset
  └─ test_icdar2015_label.txt     Test annotation of icdar dataset
```

48
The provided annotation file format is as follow, seperated by "\t":
Khanh Tran's avatar
Khanh Tran committed
49
50
```
" Image file name             Image annotation information encoded by json.dumps"
LDOUBLEV's avatar
LDOUBLEV committed
51
ch4_test_images/img_61.jpg    [{"transcription": "MASA", "points": [[310, 104], [416, 141], [418, 216], [312, 179]]}, {...}]
Khanh Tran's avatar
Khanh Tran committed
52
```
WenmuZhou's avatar
WenmuZhou committed
53
The image annotation after **json.dumps()** encoding is a list containing multiple dictionaries.
Khanh Tran's avatar
Khanh Tran committed
54

licx's avatar
licx committed
55
56
57
58
59
The `points` in the dictionary represent the coordinates (x, y) of the four points of the text box, arranged clockwise from the point at the upper left corner.

`transcription` represents the text of the current text box. **When its content is "###" it means that the text box is invalid and will be skipped during training.**

If you want to train PaddleOCR on other datasets, please build the annotation file according to the above format.
Khanh Tran's avatar
Khanh Tran committed
60
61


62
### 1.2 Download Pretrained Model
63
64
65

First download the pretrained model. The detection model of PaddleOCR currently supports 3 backbones, namely MobileNetV3, ResNet18_vd and ResNet50_vd. You can use the model in [PaddleClas](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.0/ppcls/modeling/architectures) to replace backbone according to your needs.
And the responding download link of backbone pretrain weights can be found in (https://github.com/PaddlePaddle/PaddleClas/blob/release%2F2.0/README_cn.md#resnet%E5%8F%8A%E5%85%B6vd%E7%B3%BB%E5%88%97).
Khanh Tran's avatar
Khanh Tran committed
66

licx's avatar
licx committed
67
```shell
Khanh Tran's avatar
Khanh Tran committed
68
69
cd PaddleOCR/
# Download the pre-trained model of MobileNetV3
70
wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
WenmuZhou's avatar
WenmuZhou committed
71
# or, download the pre-trained model of ResNet18_vd
72
wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet18_vd_pretrained.pdparams
WenmuZhou's avatar
WenmuZhou committed
73
# or, download the pre-trained model of ResNet50_vd
74
wget -P ./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ResNet50_vd_ssld_pretrained.pdparams
75

76
```
Khanh Tran's avatar
Khanh Tran committed
77

Leif's avatar
Leif committed
78
## 2. Training
79
80
81

### 2.1 Start Training

MissPenguin's avatar
MissPenguin committed
82
*If CPU version installed, please set the parameter `use_gpu` to `false` in the configuration.*
licx's avatar
licx committed
83
```shell
84
python3 tools/train.py -c configs/det/det_mv3_db.yml  \
Leif's avatar
Leif committed
85
         -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
Khanh Tran's avatar
Khanh Tran committed
86
87
```

MissPenguin's avatar
MissPenguin committed
88
89
In the above instruction, use `-c` to select the training to use the `configs/det/det_db_mv3.yml` configuration file.
For a detailed explanation of the configuration file, please refer to [config](./config_en.md).
Khanh Tran's avatar
Khanh Tran committed
90

91
You can also use `-o` to change the training parameters without modifying the yml file. For example, adjust the training learning rate to 0.0001
licx's avatar
licx committed
92
```shell
LDOUBLEV's avatar
update  
LDOUBLEV committed
93
# single GPU training
94
python3 tools/train.py -c configs/det/det_mv3_db.yml -o   \
Leif's avatar
Leif committed
95
         Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained  \
96
         Optimizer.base_lr=0.0001
LDOUBLEV's avatar
update  
LDOUBLEV committed
97
98

# multi-GPU training
99
# Set the GPU ID used by the '--gpus' parameter.
Leif's avatar
Leif committed
100
python3 -m paddle.distributed.launch --gpus '0,1,2,3'  tools/train.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
Bin Lu's avatar
Bin Lu committed
101
 
Bin Lu's avatar
Bin Lu committed
102
# multi-Node, multi-GPU training
Bin Lu's avatar
Bin Lu committed
103
104
105
106
107
108
# Set the IPs of your nodes used by the '--ips' parameter. Set the GPU ID used by the '--gpus' parameter.
python3 -m paddle.distributed.launch --ips="10.21.226.181,10.21.226.133" --gpus '0,1,2,3' tools/train.py -c configs/det/det_mv3_db.yml \
     -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained
```
**Note:** For multi-Node multi-GPU training, you need to replace the `ips` value in the preceding command with the address of your machine, and the machines must be able to ping each other. The command for viewing the IP address of the machine is `ifconfig`.
 
Bin Lu's avatar
Bin Lu committed
109
If you want to further speed up the training, you can use [automatic mixed precision training](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/01_paddle2.0_introduction/basic_concept/amp_en.html). for single card training, the command is as follows:
Bin Lu's avatar
Bin Lu committed
110
111
112
113
```
python3 tools/train.py -c configs/det/det_mv3_db.yml \
     -o Global.pretrained_model=./pretrain_models/MobileNetV3_large_x0_5_pretrained \
     Global.use_amp=True Global.scale_loss=1024.0 Global.use_dynamic_loss_scaling=True
Khanh Tran's avatar
Khanh Tran committed
114
115
```

116
### 2.2 Load Trained Model and Continue Training
117
If you expect to load trained model and continue the training again, you can specify the parameter `Global.checkpoints` as the model path to be loaded.
LDOUBLEV's avatar
LDOUBLEV committed
118
119

For example:
licx's avatar
licx committed
120
```shell
LDOUBLEV's avatar
LDOUBLEV committed
121
python3 tools/train.py -c configs/det/det_mv3_db.yml -o Global.checkpoints=./your/trained/model
LDOUBLEV's avatar
LDOUBLEV committed
122
123
```

Leif's avatar
Leif committed
124
**Note**: The priority of `Global.checkpoints` is higher than that of `Global.pretrained_model`, that is, when two parameters are specified at the same time, the model specified by `Global.checkpoints` will be loaded first. If the model path specified by `Global.checkpoints` is wrong, the one specified by `Global.pretrained_model` will be loaded.
LDOUBLEV's avatar
LDOUBLEV committed
125
126


127
### 2.3 Training with New Backbone
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

The network part completes the construction of the network, and PaddleOCR divides the network into four parts, which are under [ppocr/modeling](../../ppocr/modeling). The data entering the network will pass through these four parts in sequence(transforms->backbones->
necks->heads).

```bash
├── architectures # Code for building network
├── transforms    # Image Transformation Module
├── backbones     # Feature extraction module
├── necks         # Feature enhancement module
└── heads         # Output module
```

If the Backbone to be replaced has a corresponding implementation in PaddleOCR, you can directly modify the parameters in the `Backbone` part of the configuration yml file.

However, if you want to use a new Backbone, an example of replacing the backbones is as follows:

1. Create a new file under the [ppocr/modeling/backbones](../../ppocr/modeling/backbones) folder, such as my_backbone.py.
2. Add code in the my_backbone.py file, the sample code is as follows:

```python
import paddle
import paddle.nn as nn
import paddle.nn.functional as F


class MyBackbone(nn.Layer):
    def __init__(self, *args, **kwargs):
        super(MyBackbone, self).__init__()
        # your init code
        self.conv = nn.xxxx

    def forward(self, inputs):
        # your network forward
        y = self.conv(inputs)
        return y
```

3. Import the added module in the [ppocr/modeling/backbones/\__init\__.py](../../ppocr/modeling/backbones/__init__.py) file.

After adding the four-part modules of the network, you only need to configure them in the configuration file to use, such as:

```yaml
  Backbone:
    name: MyBackbone
    args1: args1
```

**NOTE**: More details about replace Backbone and other mudule can be found in [doc](add_new_algorithm_en.md).

177
178
179
## 3. Evaluation and Test

### 3.1 Evaluation
Khanh Tran's avatar
Khanh Tran committed
180

181
PaddleOCR calculates three indicators for evaluating performance of OCR detection task: Precision, Recall, and Hmean(F-Score).
Khanh Tran's avatar
Khanh Tran committed
182

LDOUBLEV's avatar
LDOUBLEV committed
183
Run the following code to calculate the evaluation indicators. The result will be saved in the test result file specified by `save_res_path` in the configuration file `det_db_mv3.yml`
Khanh Tran's avatar
Khanh Tran committed
184

185
When evaluating, set post-processing parameters `box_thresh=0.6`, `unclip_ratio=1.5`. If you use different datasets, different models for training, these two parameters should be adjusted for better result.
Khanh Tran's avatar
Khanh Tran committed
186

LDOUBLEV's avatar
LDOUBLEV committed
187
The model parameters during training are saved in the `Global.save_model_dir` directory by default. When evaluating indicators, you need to set `Global.checkpoints` to point to the saved parameter file.
licx's avatar
licx committed
188
```shell
LDOUBLEV's avatar
LDOUBLEV committed
189
python3 tools/eval.py -c configs/det/det_mv3_db.yml  -o Global.checkpoints="{path/to/weights}/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
Khanh Tran's avatar
Khanh Tran committed
190
191
```

192
* Note: `box_thresh` and `unclip_ratio` are parameters required for DB post-processing, and not need to be set when evaluating the EAST and SAST model.
Khanh Tran's avatar
Khanh Tran committed
193

194
### 3.2 Test
Khanh Tran's avatar
Khanh Tran committed
195
196

Test the detection result on a single image:
197
```shell
198
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy"
Khanh Tran's avatar
Khanh Tran committed
199
200
201
```

When testing the DB model, adjust the post-processing threshold:
202
```shell
203
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy"  PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=2.0
Khanh Tran's avatar
Khanh Tran committed
204
205
206
207
```


Test the detection result on all images in the folder:
208
```shell
209
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/" Global.pretrained_model="./output/det_db/best_accuracy"
Khanh Tran's avatar
Khanh Tran committed
210
```
211

212
## 4. Inference
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

The inference model (the model saved by `paddle.jit.save`) is generally a solidified model saved after the model training is completed, and is mostly used to give prediction in deployment.

The model saved during the training process is the checkpoints model, which saves the parameters of the model and is mostly used to resume training.

Compared with the checkpoints model, the inference model will additionally save the structural information of the model. Therefore, it is easier to deploy because the model structure and model parameters are already solidified in the inference model file, and is suitable for integration with actual systems.

Firstly, we can convert DB trained model to inference model:
```shell
python3 tools/export_model.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model="./output/det_db/best_accuracy" Global.save_inference_dir="./output/det_db_inference/"
```

The detection inference model prediction:
```shell
python3 tools/infer/predict_det.py --det_algorithm="DB" --det_model_dir="./output/det_db_inference/" --image_dir="./doc/imgs/" --use_gpu=True
```

If it is other detection algorithms, such as the EAST, the det_algorithm parameter needs to be modified to EAST, and the default is the DB algorithm:
```shell
python3 tools/infer/predict_det.py --det_algorithm="EAST" --det_model_dir="./output/det_db_inference/" --image_dir="./doc/imgs/" --use_gpu=True
```

235
## 5. FAQ
236
237
238
239
240

Q1: The prediction results of trained model and inference model are inconsistent?
**A**: Most of the problems are caused by the inconsistency of the pre-processing and post-processing parameters during the prediction of the trained model and the pre-processing and post-processing parameters during the prediction of the inference model. Taking the model trained by the det_mv3_db.yml configuration file as an example, the solution to the problem of inconsistent prediction results between the training model and the inference model is as follows:
- Check whether the [trained model preprocessing](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/configs/det/det_mv3_db.yml#L116) is consistent with the prediction [preprocessing function of the inference model](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/tools/infer/predict_det.py#L42). When the algorithm is evaluated, the input image size will affect the accuracy. In order to be consistent with the paper, the image is resized to [736, 1280] in the training icdar15 configuration file, but there is only a set of default parameters when the inference model predicts, which will be considered To predict the speed problem, the longest side of the image is limited to 960 for resize by default. The preprocessing function of the training model preprocessing and the inference model is located in [ppocr/data/imaug/operators.py](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/ppocr/data/imaug/operators.py#L147)
- Check whether the [post-processing of the trained model](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/configs/det/det_mv3_db.yml#L51) is consistent with the [post-processing parameters of the inference](https://github.com/PaddlePaddle/PaddleOCR/blob/c1ed243fb68d5d466258243092e56cbae32e2c14/tools/infer/utility.py#L50).