"INSTALL/vscode:/vscode.git/clone" did not exist on "511b8091ebc60586efef0e3d07205f6b5bc49345"
table_metric.py 8.19 KB
Newer Older
WenmuZhou's avatar
WenmuZhou committed
1
2
3
4
5
6
7
8
9
10
11
# Copyright 2020 IBM
# Author: peter.zhong@au1.ibm.com
#
# This is free software; you can redistribute it and/or modify
# it under the terms of the Apache 2.0 License.
#
# This software is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# Apache 2.0 License for more details.

Max Bachmann's avatar
Max Bachmann committed
12
from rapidfuzz.distance import Levenshtein
WenmuZhou's avatar
WenmuZhou committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
from apted import APTED, Config
from apted.helpers import Tree
from lxml import etree, html
from collections import deque
from .parallel import parallel_process
from tqdm import tqdm


class TableTree(Tree):
    def __init__(self, tag, colspan=None, rowspan=None, content=None, *children):
        self.tag = tag
        self.colspan = colspan
        self.rowspan = rowspan
        self.content = content
        self.children = list(children)

    def bracket(self):
        """Show tree using brackets notation"""
        if self.tag == 'td':
            result = '"tag": %s, "colspan": %d, "rowspan": %d, "text": %s' % \
                     (self.tag, self.colspan, self.rowspan, self.content)
        else:
            result = '"tag": %s' % self.tag
        for child in self.children:
            result += child.bracket()
        return "{{{}}}".format(result)


class CustomConfig(Config):
    def rename(self, node1, node2):
        """Compares attributes of trees"""
        #print(node1.tag)
        if (node1.tag != node2.tag) or (node1.colspan != node2.colspan) or (node1.rowspan != node2.rowspan):
            return 1.
        if node1.tag == 'td':
            if node1.content or node2.content:
                #print(node1.content, )
Max Bachmann's avatar
Max Bachmann committed
50
                return Levenshtein.normalized_distance(node1.content, node2.content)
WenmuZhou's avatar
WenmuZhou committed
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
        return 0.



class CustomConfig_del_short(Config):
    def rename(self, node1, node2):
        """Compares attributes of trees"""
        if (node1.tag != node2.tag) or (node1.colspan != node2.colspan) or (node1.rowspan != node2.rowspan):
            return 1.
        if node1.tag == 'td':
            if node1.content or node2.content:
                #print('before')
                #print(node1.content, node2.content)
                #print('after')
                node1_content = node1.content
                node2_content = node2.content
                if len(node1_content) < 3:
                    node1_content = ['####']
                if len(node2_content) < 3:
                    node2_content = ['####']   
Max Bachmann's avatar
Max Bachmann committed
71
                return Levenshtein.normalized_distance(node1_content, node2_content)
WenmuZhou's avatar
WenmuZhou committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        return 0.

class CustomConfig_del_block(Config):
    def rename(self, node1, node2):
        """Compares attributes of trees"""
        if (node1.tag != node2.tag) or (node1.colspan != node2.colspan) or (node1.rowspan != node2.rowspan):
            return 1.
        if node1.tag == 'td':
            if node1.content or node2.content:
                
                node1_content = node1.content
                node2_content = node2.content
                while ' '  in node1_content:
                    print(node1_content.index(' '))
                    node1_content.pop(node1_content.index(' '))
                while ' ' in node2_content:
                    print(node2_content.index(' '))
                    node2_content.pop(node2_content.index(' '))
Max Bachmann's avatar
Max Bachmann committed
90
                return Levenshtein.normalized_distance(node1_content, node2_content)
WenmuZhou's avatar
WenmuZhou committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
        return 0.

class TEDS(object):
    ''' Tree Edit Distance basead Similarity
    '''

    def __init__(self, structure_only=False, n_jobs=1, ignore_nodes=None):
        assert isinstance(n_jobs, int) and (
            n_jobs >= 1), 'n_jobs must be an integer greather than 1'
        self.structure_only = structure_only
        self.n_jobs = n_jobs
        self.ignore_nodes = ignore_nodes
        self.__tokens__ = []

    def tokenize(self, node):
        ''' Tokenizes table cells
        '''
        self.__tokens__.append('<%s>' % node.tag)
        if node.text is not None:
            self.__tokens__ += list(node.text)
        for n in node.getchildren():
            self.tokenize(n)
        if node.tag != 'unk':
            self.__tokens__.append('</%s>' % node.tag)
        if node.tag != 'td' and node.tail is not None:
            self.__tokens__ += list(node.tail)

    def load_html_tree(self, node, parent=None):
        ''' Converts HTML tree to the format required by apted
        '''
        global __tokens__
        if node.tag == 'td':
            if self.structure_only:
                cell = []
            else:
                self.__tokens__ = []
                self.tokenize(node)
                cell = self.__tokens__[1:-1].copy()
            new_node = TableTree(node.tag,
                                 int(node.attrib.get('colspan', '1')),
                                 int(node.attrib.get('rowspan', '1')),
                                 cell, *deque())
        else:
            new_node = TableTree(node.tag, None, None, None, *deque())
        if parent is not None:
            parent.children.append(new_node)
        if node.tag != 'td':
            for n in node.getchildren():
                self.load_html_tree(n, new_node)
        if parent is None:
            return new_node

    def evaluate(self, pred, true):
        ''' Computes TEDS score between the prediction and the ground truth of a
            given sample
        '''
        if (not pred) or (not true):
            return 0.0
        parser = html.HTMLParser(remove_comments=True, encoding='utf-8')
        pred = html.fromstring(pred, parser=parser)
        true = html.fromstring(true, parser=parser)
        if pred.xpath('body/table') and true.xpath('body/table'):
            pred = pred.xpath('body/table')[0]
            true = true.xpath('body/table')[0]
            if self.ignore_nodes:
                etree.strip_tags(pred, *self.ignore_nodes)
                etree.strip_tags(true, *self.ignore_nodes)
            n_nodes_pred = len(pred.xpath(".//*"))
            n_nodes_true = len(true.xpath(".//*"))
            n_nodes = max(n_nodes_pred, n_nodes_true)
            tree_pred = self.load_html_tree(pred)
            tree_true = self.load_html_tree(true)
            distance = APTED(tree_pred, tree_true,
                             CustomConfig()).compute_edit_distance()
            return 1.0 - (float(distance) / n_nodes)
        else:
            return 0.0

    def batch_evaluate(self, pred_json, true_json):
        ''' Computes TEDS score between the prediction and the ground truth of
            a batch of samples
            @params pred_json: {'FILENAME': 'HTML CODE', ...}
            @params true_json: {'FILENAME': {'html': 'HTML CODE'}, ...}
            @output: {'FILENAME': 'TEDS SCORE', ...}
        '''
        samples = true_json.keys()
        if self.n_jobs == 1:
            scores = [self.evaluate(pred_json.get(
                filename, ''), true_json[filename]['html']) for filename in tqdm(samples)]
        else:
            inputs = [{'pred': pred_json.get(
                filename, ''), 'true': true_json[filename]['html']} for filename in samples]
            scores = parallel_process(
                inputs, self.evaluate, use_kwargs=True, n_jobs=self.n_jobs, front_num=1)
        scores = dict(zip(samples, scores))
        return scores

    def batch_evaluate_html(self, pred_htmls, true_htmls):
        ''' Computes TEDS score between the prediction and the ground truth of
            a batch of samples
        '''
        if self.n_jobs == 1:
            scores = [self.evaluate(pred_html, true_html) for (
                pred_html, true_html) in zip(pred_htmls, true_htmls)]
        else:
            inputs = [{"pred": pred_html, "true": true_html} for(
                pred_html, true_html) in zip(pred_htmls, true_htmls)]

            scores = parallel_process(
                inputs, self.evaluate, use_kwargs=True, n_jobs=self.n_jobs, front_num=1)
        return scores


if __name__ == '__main__':
    import json
    import pprint
    with open('sample_pred.json') as fp:
        pred_json = json.load(fp)
    with open('sample_gt.json') as fp:
        true_json = json.load(fp)
    teds = TEDS(n_jobs=4)
    scores = teds.batch_evaluate(pred_json, true_json)
    pp = pprint.PrettyPrinter()
    pp.pprint(scores)