ViewController.mm 18.4 KB
Newer Older
lvxiangxiang's avatar
lvxiangxiang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
//
// Created by lvxiangxiang on 2020/7/10.
// Copyright (c) 2020 baidu. All rights reserved.
//

#import <opencv2/opencv.hpp>
#import <opencv2/imgcodecs/ios.h>
#import <opencv2/videoio/cap_ios.h>
//#import <opencv2/highgui/ios.h>
#import "ViewController.h"
#import "BoxLayer.h"

#include "include/paddle_api.h"
#include "timer.h"
#import "pdocr/ocr_db_post_process.h"
#import "pdocr/ocr_crnn_process.h"

using namespace paddle::lite_api;
using namespace cv;

struct Object {
    int batch_id;
    cv::Rect rec;
    int class_id;
    float prob;
};

std::mutex mtx;
std::shared_ptr<PaddlePredictor> net_ocr1;
std::shared_ptr<PaddlePredictor> net_ocr2;
Timer tic;
long long count = 0;

double tensor_mean(const Tensor &tin) {
    auto shape = tin.shape();
    int64_t size = 1;
    for (int i = 0; i < shape.size(); i++) {
        size *= shape[i];
    }
    double mean = 0.;
    auto ptr = tin.data<float>();
    for (int i = 0; i < size; i++) {
        mean += ptr[i];
    }
    return mean / size;
}

cv::Mat resize_img_type0(const cv::Mat &img, int max_size_len, float *ratio_h, float *ratio_w) {
    int w = img.cols;
    int h = img.rows;

    float ratio = 1.f;
    int max_wh = w >= h ? w : h;
    if (max_wh > max_size_len) {
        if (h > w) {
            ratio = float(max_size_len) / float(h);
        } else {
            ratio = float(max_size_len) / float(w);
        }
    }

    int resize_h = int(float(h) * ratio);
    int resize_w = int(float(w) * ratio);
    if (resize_h % 32 == 0)
        resize_h = resize_h;
    else if (resize_h / 32 < 1)
        resize_h = 32;
    else
        resize_h = (resize_h / 32 - 1) * 32;

    if (resize_w % 32 == 0)
        resize_w = resize_w;
    else if (resize_w / 32 < 1)
        resize_w = 32;
    else
        resize_w = (resize_w / 32 - 1) * 32;

    cv::Mat resize_img;
    cv::resize(img, resize_img, cv::Size(resize_w, resize_h));

    *ratio_h = float(resize_h) / float(h);
    *ratio_w = float(resize_w) / float(w);
    return resize_img;
}

void neon_mean_scale(const float *din, float *dout, int size, std::vector<float> mean, std::vector<float> scale) {
    float32x4_t vmean0 = vdupq_n_f32(mean[0]);
    float32x4_t vmean1 = vdupq_n_f32(mean[1]);
    float32x4_t vmean2 = vdupq_n_f32(mean[2]);
    float32x4_t vscale0 = vdupq_n_f32(1.f / scale[0]);
    float32x4_t vscale1 = vdupq_n_f32(1.f / scale[1]);
    float32x4_t vscale2 = vdupq_n_f32(1.f / scale[2]);

    float *dout_c0 = dout;
    float *dout_c1 = dout + size;
    float *dout_c2 = dout + size * 2;

    int i = 0;
    for (; i < size - 3; i += 4) {
        float32x4x3_t vin3 = vld3q_f32(din);
        float32x4_t vsub0 = vsubq_f32(vin3.val[0], vmean0);
        float32x4_t vsub1 = vsubq_f32(vin3.val[1], vmean1);
        float32x4_t vsub2 = vsubq_f32(vin3.val[2], vmean2);
        float32x4_t vs0 = vmulq_f32(vsub0, vscale0);
        float32x4_t vs1 = vmulq_f32(vsub1, vscale1);
        float32x4_t vs2 = vmulq_f32(vsub2, vscale2);
        vst1q_f32(dout_c0, vs0);
        vst1q_f32(dout_c1, vs1);
        vst1q_f32(dout_c2, vs2);

        din += 12;
        dout_c0 += 4;
        dout_c1 += 4;
        dout_c2 += 4;
    }
    for (; i < size; i++) {
        *(dout_c0++) = (*(din++) - mean[0]) / scale[0];
        *(dout_c1++) = (*(din++) - mean[1]) / scale[1];
        *(dout_c2++) = (*(din++) - mean[2]) / scale[2];
    }
}


// fill tensor with mean and scale, neon speed up
void fill_tensor_with_cvmat(const Mat &img_in, Tensor &tout, int width, int height,
        std::vector<float> mean, std::vector<float> scale, bool is_scale) {
    if (img_in.channels() == 4) {
        cv::cvtColor(img_in, img_in, CV_RGBA2RGB);
    }
    cv::Mat im;
    cv::resize(img_in, im, cv::Size(width, height), 0.f, 0.f);
    cv::Mat imgf;
    float scale_factor = is_scale ? 1 / 255.f : 1.f;
    im.convertTo(imgf, CV_32FC3, scale_factor);
    const float *dimg = reinterpret_cast<const float *>(imgf.data);
    float *dout = tout.mutable_data<float>();
    neon_mean_scale(dimg, dout, width * height, mean, scale);
}

std::vector<Object> detect_object(const float *data,
        int count,
        const std::vector<std::vector<uint64_t>> &lod,
        const float thresh,
        Mat &image) {
    std::vector<Object> rect_out;
    const float *dout = data;
    for (int iw = 0; iw < count; iw++) {
        int oriw = image.cols;
        int orih = image.rows;
        if (dout[1] > thresh && static_cast<int>(dout[0]) > 0) {
            Object obj;
            int x = static_cast<int>(dout[2] * oriw);
            int y = static_cast<int>(dout[3] * orih);
            int w = static_cast<int>(dout[4] * oriw) - x;
            int h = static_cast<int>(dout[5] * orih) - y;
            cv::Rect rec_clip = cv::Rect(x, y, w, h) & cv::Rect(0, 0, image.cols, image.rows);
            obj.batch_id = 0;
            obj.class_id = static_cast<int>(dout[0]);
            obj.prob = dout[1];
            obj.rec = rec_clip;
            if (w > 0 && h > 0 && obj.prob <= 1) {
                rect_out.push_back(obj);
                cv::rectangle(image, rec_clip, cv::Scalar(255, 0, 0));
            }
        }
        dout += 6;
    }
    return rect_out;
}

@interface ViewController () <CvVideoCameraDelegate>
@property(weak, nonatomic) IBOutlet UIImageView *imageView;
@property(weak, nonatomic) IBOutlet UISwitch *flag_process;
@property(weak, nonatomic) IBOutlet UISwitch *flag_video;
@property(weak, nonatomic) IBOutlet UIImageView *preView;
@property(weak, nonatomic) IBOutlet UISwitch *flag_back_cam;
@property(weak, nonatomic) IBOutlet UILabel *result;
@property(nonatomic, strong) CvVideoCamera *videoCamera;
@property(nonatomic, strong) UIImage *image;
@property(nonatomic) bool flag_init;
@property(nonatomic) bool flag_cap_photo;
@property(nonatomic) std::vector<float> scale;
@property(nonatomic) std::vector<float> mean;
@property(nonatomic) NSArray *labels;
@property(nonatomic) cv::Mat cvimg;
@property(nonatomic, strong) UIImage *ui_img_test;
@property(strong, nonatomic) CALayer *boxLayer;

@end

@implementation ViewController
@synthesize imageView;

- (OcrData *)paddleOcrRec:(cv::Mat)image {

    OcrData *result = [OcrData new];

    std::vector<float> mean = {0.5f, 0.5f, 0.5f};
    std::vector<float> scale = {1 / 0.5f, 1 / 0.5f, 1 / 0.5f};

    cv::Mat crop_img;
    image.copyTo(crop_img);
    cv::Mat resize_img;


    float wh_ratio = float(crop_img.cols) / float(crop_img.rows);

    resize_img = crnn_resize_img(crop_img, wh_ratio);
    resize_img.convertTo(resize_img, CV_32FC3, 1 / 255.f);

    const float *dimg = reinterpret_cast<const float *>(resize_img.data);

    std::unique_ptr<Tensor> input_tensor0(std::move(net_ocr2->GetInput(0)));
    input_tensor0->Resize({1, 3, resize_img.rows, resize_img.cols});
    auto *data0 = input_tensor0->mutable_data<float>();

    neon_mean_scale(dimg, data0, resize_img.rows * resize_img.cols, mean, scale);

    //// Run CRNN predictor
    net_ocr2->Run();

    // Get output and run postprocess
    std::unique_ptr<const Tensor> output_tensor0(std::move(net_ocr2->GetOutput(0)));
    auto *rec_idx = output_tensor0->data<int>();

    auto rec_idx_lod = output_tensor0->lod();
    auto shape_out = output_tensor0->shape();
    NSMutableString *text = [[NSMutableString alloc] init];
    for (int n = int(rec_idx_lod[0][0]); n < int(rec_idx_lod[0][1] * 2); n += 2) {
        if (rec_idx[n] >= self.labels.count) {
            std::cout << "Index " << rec_idx[n] << " out of text dict range!" << std::endl;
            continue;
        }
        [text appendString:self.labels[rec_idx[n]]];
    }

    result.label = text;
    // get score
    std::unique_ptr<const Tensor> output_tensor1(std::move(net_ocr2->GetOutput(1)));
    auto *predict_batch = output_tensor1->data<float>();
    auto predict_shape = output_tensor1->shape();

    auto predict_lod = output_tensor1->lod();

    int argmax_idx;
    int blank = predict_shape[1];
    float score = 0.f;
    int count = 0;
    float max_value = 0.0f;

    for (int n = predict_lod[0][0]; n < predict_lod[0][1] - 1; n++) {
        argmax_idx = int(argmax(&predict_batch[n * predict_shape[1]], &predict_batch[(n + 1) * predict_shape[1]]));
        max_value = float(*std::max_element(&predict_batch[n * predict_shape[1]], &predict_batch[(n + 1) * predict_shape[1]]));

        if (blank - 1 - argmax_idx > 1e-5) {
            score += max_value;
            count += 1;
        }

    }
    score /= count;
    result.accuracy = score;
    return result;
}
- (NSArray *) ocr_infer:(cv::Mat) originImage{
    int max_side_len = 960;
    float ratio_h{};
    float ratio_w{};
    cv::Mat image;
    cv::cvtColor(originImage, image, cv::COLOR_RGB2BGR);

    cv::Mat img;
    image.copyTo(img);

    img = resize_img_type0(img, max_side_len, &ratio_h, &ratio_w);
    cv::Mat img_fp;
    img.convertTo(img_fp, CV_32FC3, 1.0 / 255.f);

    std::unique_ptr<Tensor> input_tensor(net_ocr1->GetInput(0));
    input_tensor->Resize({1, 3, img_fp.rows, img_fp.cols});
    auto *data0 = input_tensor->mutable_data<float>();
    const float *dimg = reinterpret_cast<const float *>(img_fp.data);
    neon_mean_scale(dimg, data0, img_fp.rows * img_fp.cols, self.mean, self.scale);
    tic.clear();
    tic.start();
    net_ocr1->Run();
    std::unique_ptr<const Tensor> output_tensor(std::move(net_ocr1->GetOutput(0)));
    auto *outptr = output_tensor->data<float>();
    auto shape_out = output_tensor->shape();

    int64_t out_numl = 1;
    double sum = 0;
    for (auto i : shape_out) {
        out_numl *= i;
    }

    int s2 = int(shape_out[2]);
    int s3 = int(shape_out[3]);

    cv::Mat pred_map = cv::Mat::zeros(s2, s3, CV_32F);
    memcpy(pred_map.data, outptr, s2 * s3 * sizeof(float));
    cv::Mat cbuf_map;
    pred_map.convertTo(cbuf_map, CV_8UC1, 255.0f);

    const double threshold = 0.1 * 255;
    const double maxvalue = 255;
    cv::Mat bit_map;
    cv::threshold(cbuf_map, bit_map, threshold, maxvalue, cv::THRESH_BINARY);

    auto boxes = boxes_from_bitmap(pred_map, bit_map);

    std::vector<std::vector<std::vector<int>>> filter_boxes = filter_tag_det_res(boxes, ratio_h, ratio_w, image);


    cv::Point rook_points[filter_boxes.size()][4];

    for (int n = 0; n < filter_boxes.size(); n++) {
        for (int m = 0; m < filter_boxes[0].size(); m++) {
            rook_points[n][m] = cv::Point(int(filter_boxes[n][m][0]), int(filter_boxes[n][m][1]));
        }
    }

    NSMutableArray *result = [[NSMutableArray alloc] init];

    for (int i = 0; i < filter_boxes.size(); i++) {
        cv::Mat crop_img;
        crop_img = get_rotate_crop_image(image, filter_boxes[i]);
        OcrData *r = [self paddleOcrRec:crop_img ];
        NSMutableArray *points = [NSMutableArray new];
        for (int jj = 0; jj < 4; ++jj) {
            NSValue *v = [NSValue valueWithCGPoint:CGPointMake(
                    rook_points[i][jj].x / CGFloat(originImage.cols),
                    rook_points[i][jj].y / CGFloat(originImage.rows))];
            [points addObject:v];
        }
        r.polygonPoints = points;
        [result addObject:r];
    }
    NSArray* rec_out =[[result reverseObjectEnumerator] allObjects];
    tic.end();
    std::cout<<"infer time: "<<tic.get_sum_ms()<<"ms"<<std::endl;
    return rec_out;
}
- (NSArray *)readLabelsFromFile:(NSString *)labelFilePath {

    NSString *content = [NSString stringWithContentsOfFile:labelFilePath encoding:NSUTF8StringEncoding error:nil];
    NSArray *lines = [content componentsSeparatedByCharactersInSet:[NSCharacterSet newlineCharacterSet]];
    NSMutableArray *ret = [[NSMutableArray alloc] init];
    for (int i = 0; i < lines.count; ++i) {
        [ret addObject:@""];
    }
    NSUInteger cnt = 0;
    for (id line in lines) {
        NSString *l = [(NSString *) line stringByTrimmingCharactersInSet:[NSCharacterSet whitespaceAndNewlineCharacterSet]];
        if ([l length] == 0)
            continue;
        NSArray *segs = [l componentsSeparatedByString:@":"];
        NSUInteger key;
        NSString *value;
        if ([segs count] != 2) {
            key = cnt;
            value = [segs[0] stringByTrimmingCharactersInSet:[NSCharacterSet whitespaceAndNewlineCharacterSet]];
        } else {
            key = [[segs[0] stringByTrimmingCharactersInSet:[NSCharacterSet whitespaceAndNewlineCharacterSet]] integerValue];
            value = [segs[1] stringByTrimmingCharactersInSet:[NSCharacterSet whitespaceAndNewlineCharacterSet]];
        }

        ret[key] = value;
        cnt += 1;
    }
    return [NSArray arrayWithArray:ret];
}

- (void)viewDidAppear:(BOOL)animated {
    [super viewDidAppear:animated];
    self.boxLayer = [[CALayer alloc] init];

    CGRect r = AVMakeRectWithAspectRatioInsideRect(self.imageView.frame.size, self.imageView.bounds);
    std::cout<<self.imageView.frame.size.width<<","<<self.imageView.frame.size.height<<std::endl;
    self.boxLayer.frame = r;

    [self.imageView.layer addSublayer:self.boxLayer];

    NSString *label_file_path = [[NSBundle mainBundle] pathForResource:[NSString stringWithFormat:@"%@", @"label_list"] ofType:@"txt"];

    self.labels = [self readLabelsFromFile:label_file_path];
    self.mean = {0.485f, 0.456f, 0.406f};
    self.scale = {1 / 0.229f, 1 / 0.224f, 1 / 0.225f};

    NSString *model1_path = [[NSBundle mainBundle] pathForResource:[NSString stringWithFormat:@"%@", @"ch_det_mv3_db_opt"] ofType:@"nb"];
    NSString *model2_path = [[NSBundle mainBundle] pathForResource:[NSString stringWithFormat:@"%@", @"ch_rec_mv3_crnn_opt"] ofType:@"nb"];
    std::string model1_path_str = std::string([model1_path UTF8String]);
    std::string model2_path_str =  std::string([model2_path UTF8String]);
    MobileConfig config;
    config.set_model_from_file(model1_path_str);
    net_ocr1 = CreatePaddlePredictor<MobileConfig>(config);
    MobileConfig config2;
    config2.set_model_from_file(model2_path_str);
    net_ocr2 = CreatePaddlePredictor<MobileConfig>(config2);


    cv::Mat originImage;
    UIImageToMat(self.image, originImage);
    NSArray *rec_out = [self ocr_infer:originImage];
    [_boxLayer.sublayers makeObjectsPerformSelector:@selector(removeFromSuperlayer)];
    std::cout<<self.imageView.image.size.width<<","<<self.imageView.image.size.height<<std::endl;

    CGFloat h = _boxLayer.frame.size.height;
    CGFloat w = _boxLayer.frame.size.width;
    std::ostringstream result2;
    NSInteger cnt = 0;
    for (id obj in rec_out) {
        OcrData *data = obj;
        BoxLayer *singleBox = [[BoxLayer alloc] init];
        [singleBox renderOcrPolygon:data withHeight:h withWidth:w withLabel:YES];
        [_boxLayer addSublayer:singleBox];
        result2<<[data.label UTF8String] <<","<<data.accuracy<<"\n";
        cnt += 1;
    }
    self.flag_init = true;
}

- (void)viewDidLoad {
    [super viewDidLoad];
    // Do any additional setup after loading the view, typically from a nib.
    _flag_process.on = NO;
    _flag_back_cam.on = NO;
    _flag_video.on = NO;
    _flag_cap_photo = false;
    _image = [UIImage imageNamed:@"ocr.png"];
    if (_image != nil) {
        printf("load image successed\n");
        imageView.image = _image;
    } else {
        printf("load image failed\n");
    }

    [_flag_process addTarget:self action:@selector(PSwitchValueChanged:) forControlEvents:UIControlEventValueChanged];
    [_flag_back_cam addTarget:self action:@selector(CSwitchValueChanged:) forControlEvents:UIControlEventValueChanged];

    self.videoCamera = [[CvVideoCamera alloc] initWithParentView:self.preView];
    self.videoCamera.delegate = self;
    self.videoCamera.defaultAVCaptureDevicePosition = AVCaptureDevicePositionFront;
    self.videoCamera.defaultAVCaptureSessionPreset = AVCaptureSessionPreset1920x1080;
    self.videoCamera.defaultAVCaptureVideoOrientation = AVCaptureVideoOrientationPortrait;
    self.videoCamera.rotateVideo = 90;
    self.videoCamera.defaultFPS = 30;
    [self.view insertSubview:self.imageView atIndex:0];
}

- (IBAction)swith_video_photo:(UISwitch *)sender {
    NSLog(@"%@", sender.isOn ? @"video ON" : @"video OFF");
    if (sender.isOn) {
        self.flag_video.on = YES;
    } else {
        self.flag_video.on = NO;
    }
}

- (IBAction)cap_photo:(id)sender {
    if (!self.flag_process.isOn) {
        self.result.text = @"please turn on the camera firstly";
    } else {
        self.flag_cap_photo = true;
    }
}

- (void)PSwitchValueChanged:(UISwitch *)sender {
    NSLog(@"%@", sender.isOn ? @"process ON" : @"process OFF");
    if (sender.isOn) {
        [self.videoCamera start];
    } else {
        [self.videoCamera stop];
    }
}

- (void)CSwitchValueChanged:(UISwitch *)sender {
    NSLog(@"%@", sender.isOn ? @"back ON" : @"back OFF");
    if (sender.isOn) {
        if (self.flag_process.isOn) {
            [self.videoCamera stop];
        }
        self.videoCamera.defaultAVCaptureDevicePosition = AVCaptureDevicePositionBack ;
        if (self.flag_process.isOn) {
            [self.videoCamera start];
        }
    } else {
        if (self.flag_process.isOn) {
            [self.videoCamera stop];
        }
        self.videoCamera.defaultAVCaptureDevicePosition = AVCaptureDevicePositionFront;
        if (self.flag_process.isOn) {
            [self.videoCamera start];
        }
    }
}

- (void)processImage:(cv::Mat &)image {

    dispatch_async(dispatch_get_main_queue(), ^{
        if (self.flag_process.isOn) {
            if (self.flag_init) {
                if (self.flag_video.isOn || self.flag_cap_photo) {
                    self.flag_cap_photo = false;
                    if (image.channels() == 4) {
                        cvtColor(image, self->_cvimg, CV_RGBA2RGB);
                    }
                    auto rec_out =[self ocr_infer:self->_cvimg];
                    std::ostringstream result;
                    NSInteger cnt = 0;
                    [_boxLayer.sublayers makeObjectsPerformSelector:@selector(removeFromSuperlayer)];

                    CGFloat h = _boxLayer.frame.size.height;
                    CGFloat w = _boxLayer.frame.size.width;
                    for (id obj in rec_out) {
                        OcrData *data = obj;
                        BoxLayer *singleBox = [[BoxLayer alloc] init];
                        [singleBox renderOcrPolygon:data withHeight:h withWidth:w withLabel:YES];
                        [_boxLayer addSublayer:singleBox];
                        result<<[data.label UTF8String] <<","<<data.accuracy<<"\n";
                        cnt += 1;
                    }
                    cvtColor(self->_cvimg, self->_cvimg, CV_RGB2BGR);
                    self.imageView.image = MatToUIImage(self->_cvimg);
                }
            }
        }
    });
}

- (void)didReceiveMemoryWarning {
    [super didReceiveMemoryWarning];
    // Dispose of any resources that can be recreated.
}

@end